To examine the role of small RNAs in peripheral pain pathways, we deleted the enzyme Dicer in mouse postmitotic damage-sensing neurons. We used a Nav1.8-Cre mouse to target those nociceptors important for inflammatory pain. The conditional null mice were healthy with a normal number of sensory neurons and normal acute pain thresholds. Behavioral studies showed that inflammatory pain was attenuated or abolished. Inflammatory mediators failed to enhance excitability of Nav1.8 ϩ sensory neurons from null mutant mice. Acute noxious input into the dorsal horn of the spinal cord was apparently normal, but the increased input associated with inflammatory pain measured using c-Fos staining was diminished. Microarray and quantitative real-time reverse-transcription PCR (qRT-PCR) analysis showed that Dicer deletion lead to the upregulation of many broadly expressed mRNA transcripts in dorsal root ganglia. By contrast, nociceptor-associated mRNA transcripts (e.g., Nav1.8, P2xr3, and Runx-1) were downregulated, resulting in lower levels of protein and functional expression. qRT-PCR analysis also showed lowered levels of expression of nociceptor-specific pre-mRNA transcripts. MicroRNA microarray and deep sequencing identified known and novel nociceptor microRNAs in mouse Nav1.8 ϩ sensory neurons that may regulate nociceptor gene expression.
ObjectiveMultimodal analgesia pathways have been shown to reduce opioid use and side effects in surgical patients. A quality improvement initiative was implemented to increase the use of multimodal analgesia in adult patients presenting for general anaesthesia at an academic tertiary care centre. The aim of this study was to increase adoption of a perioperative multimodal analgesia protocol across a broad population of surgical patients. The use of multimodal analgesia was tracked as a process metric. Our primary outcome was opioid use normalised to oral morphine equivalents (OME) intraoperatively, in the postanaesthesia care unit (PACU), and 48 hours postoperatively. Pain scores and use of antiemetics were measured as balancing metrics.MethodsWe conducted a quality improvement study of a multimodal analgesia protocol implemented for adult (≥18 and≤70) non-transplant patients undergoing general anaesthesia (≥180 min). Components of multimodal analgesia were defined as (1) preoperative analgesic medication (acetaminophen, celecoxib, diclofenac, gabapentin), (2) regional anaesthesia (peripheral nerve block or catheter, epidural catheter or spinal) or (3) intraoperative analgesic medication (ketamine, ketorolac, lidocaine infusion, magnesium, acetaminophen, dexamethasone ≥8 mg, dexmedetomidine). We compared opioid use, pain scores and antiemetic use for patients 1 year before (baseline group—1 July 2018 to 30 June 2019) and 1 year after (implementation group—1 July 2019 to 30 June 2020) project implementation.ResultsUse of multimodal analgesia improved from 53.9% in the baseline group to 67.5% in the implementation group (p<0.001). There was no significant difference in intraoperative OME use before and after implementation (β0=44.0, β2=0.52, p=0.875). OME decreased after the project implementation in the PACU (β0=34.4, β2=−3.88, p<0.001) and 48 hours postoperatively (β0=184.9, β2=−22.59, p<0.001), while pain scores during those time points were similar.ConclusionA perioperative pragmatic multimodal analgesic intervention was associated with reduced OME use in the PACU and 48 hours postoperatively.
BACKGROUND:The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS:Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS:Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors.Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION: Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level. (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.