Computational calculations and experimental studies reveal that the CoOOH phase and the intermediate-spin (IS) state are the key factors for realizing efficient Co-based electrocatalysts for the oxygen evolution reaction (OER). However, according to thermodynamics, general cobalt oxide converts to the CoO2 phase under OER condition, retarding the OER kinetics. Herein, we demonstrate a simple and scalable strategy to fabricate electrodes with maintaining Fe-CoOOH phase and an IS state under the OER. The changes of phase and spin states were uncovered by combining in-situ/operando X-ray based absorption spectroscopy and Raman spectroscopy. Electrochemical reconstruction of chalcogenide treated Co foam affords a highly enlarged active surface that conferred excellent catalytic activity and stability in a large-scale water electrolyzer. Our findings are meaningful in that the calculated results were experimentally verified through the operando analyses. It also proposes a new strategy for electrode fabrication and confirms the importance of real active phases and spin states under a particular reaction condition.
Evolving cost-effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP-CoP 2 (CNP-CP) composite is in situ deposited on carbon fabric by a one-step hydrothermal technique. The CNP-CP reveals hybrid nanoarchitecture (3D-on-1D HNA), i.e., cashew fruit-like nanostructures and nanocones. The CNP-CP HNA electrode delivers higher areal capacity (82.8 𝝁Ah cm -2 ) than the other electrodes. Furthermore, a hybrid cell assembled with CNP-CP HNA shows maximum energy and power densities of 31 𝝁Wh cm -2 and 10.9 mW cm -2 , respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X-ray absorption near-edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP-CP material during real-time electrochemical reactions. Besides, a quasi-solid-state device unveils its practicability by powering electronic components. Meanwhile, the CNP-CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec -1 ) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP-based materials for multifunctional applications.
Ammonia has recently received considerable attention as an alternative energy carrier and a carbon-neutral fuel. In this future energy scenario, the ammonia oxidation reaction (AOR) is a pivotal process for onsite hydrogen production and/or electricity generation. However, its implementation is hindered by the nondurable nature of AOR catalysis by platinum. Accordingly, securement of a durable Pt electrocatalysis for the AOR is critical but has been hampered by the well-known chemical deactivation (i.e., poisoning). Additionally, the structural stability, which could also affect durable AOR operation, has scarcely been investigated. Herein, the degradation of Pt catalysts under AOR conditions has been investigated with various operando and in/ex situ spectroscopies. We demonstrate that NH3 (or AOR intermediates/byproducts) modifies the chemical structures of both the Pt surface and dissolved Pt ions, specifically by passivation of the Pt surface with NH3-derived adsorbates and complexation of the dissolved Pt ions, respectively. These modifications lead to a significant acceleration in Pt dissolution but a deceleration in its redeposition, resulting in the augmented structural degradation of Pt catalysts in NH3-containing electrolyte after the Pt has experienced a potential excursion above ca. 1 VRHE. With these understandings, a quasi-stable operation potential window and operational strategy are suggested. The tentative AOR protocol allows prolonged NH3 electrolysis with alleviated Pt dissolution (<0.02 ng cmPt –2 s–1), suggesting that NH3 will be a viable future energy carrier if the rational operational strategy proposed herein is developed further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.