The gate‐tunable phonon properties in bilayer MoS2 are shown to be dependent on excitation energy. Raman intensity, Raman shift, and linewidth are affected by resonant excitation, while a nonresonant laser does not influence the intensity significantly. The gate‐dependent Raman shift of A1g mode (either blue‐, red‐, or no‐shift) is a result of the combined effect of antibonding electron and resonant‐related decoupling effect. Although the decoupling effect cannot be directly measured due to the resonant background, it can be indirectly and qualitatively probed by observing A1g mode. This study on gate‐tunable resonant Raman spectroscopy has clarified the influence of carrier doping on phonon properties and demonstrates a new degree of freedom in manipulating phonons in 2D material systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.