Charge transfer in DNA is an essential process in biological systems because of its close relation to DNA damage and repair. DNA is also an important material used in nanotechnology for wiring and constructing various nanomaterials. Although hole transfer in DNA has been investigated by various researchers and the dynamic properties of this process have been well established, the dynamics of a negative charge, that is, excess electron, in DNA have not been revealed until now. In the present paper, we directly measured the rate of excess electron transfer (EET) through a consecutive thymine (T) sequence in nicked-dumbbell DNAs conjugated with a tetrathiophene derivative (4T) as an electron donor and diphenylacetylene (DPA) as an electron acceptor at both ends. The selective excitation of 4T by a femtosecond laser pulse caused the excess electron injection into DNA, and led to EET in DNA by a consecutive T-hopping mechanism, which eventually formed the DPA radical anion (DPA(•-)). The rate constant for the process of EET through consecutive T was determined to be (4.4 ± 0.3) × 10(10) s(-1) from an analysis of the kinetic traces of the ΔO.D. during the laser flash photolysis. It should be emphasized that the EET rate constant for T-hopping is faster than the rate constants for oxidative hole transfers in DNA (10(4) to 10(10) s(-1) for A- and G-hopping).
Steady-state fluorescence spectra were measured for 1,8-naphthahlimide-linker-phenothiazine dyads (NI-L-PTZ, where L = octamethylenyl ((CH2)8) and 3,6,9-trioxaundecyl ((CH2CH2O)3C2H4)), NI-C8-PTZ and NI-O-PTZ, as well as the NI derivatives substituted on the nitrogen atom with various linker groups without PTZ as the reference NI molecule in n-hexane. Normal fluorescence peaks were observed at 367-369 nm in all NI molecules together with a broader emission around 470 nm, which is assigned to the excimer emission between the NI in the singlet excited state (1NI*) and the NI moiety of another NI molecule (1[NI/NI]*). In addition, a broad peak around 600 nm was observed only for NI-L-PTZ, which is assigned to an intramolecular exciplex emission between donor (PTZ) and acceptor (NI) moieties in the excited singlet state, 1[NI-L-NI]*. The formation of an intramolecular exciplex corresponds to the existence of a conformer with a weak face-to-face interaction between the NI and PTZ moieties in the excited state because of the long and flexible linkers. The excited-state dynamics of the NI molecules in n-hexane were established by means of time-resolved fluorescence spectroscopy.
Excess-electron transfer (EET) in DNA has attracted wide attention owing to its close relation to DNA repair and nanowires. To clarify the dynamics of EET in DNA, a photosensitizing electron donor that can donate an excess electron to a variety of DNA sequences has to be developed. Herein, a terthiophene (3T) derivative was used as the photosensitizing electron donor. From the dyad systems in which 3T was connected to a single nucleobase, it was revealed that (1) 3T* donates an excess electron efficiently to thymine, cytosine, and adenine, despite adenine being a well-known hole conductor. The free-energy dependence of the electron-transfer rate was explained on the basis of the Marcus theory. From the DNA hairpins, it became clear that (1) 3T* can donate an excess electron not only to the adjacent nucleobase but also to the neighbor one nucleobase further along and so on. From the charge-injection rate, the possibilities of smaller β value and/or charge delocalization were discussed. In addition, EET through consecutive cytosine nucleobases was suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.