This study was concerned with the effects of microstructural parameters on the microcracking phenomenon occurring during strip casting of an AISI 304 stainless steel. Detailed microstructural analyses of the microcracked regions showed that microcracks were formed mainly along tortoise-shell-shaped depressions and that their number and size were considerably reduced when strip casting was done right after a shot-blasting or pickling treatment of the casting roll surface. This microcracking phenomenon was closely related to the formation of a black oxide layer, which was mainly composed of manganese-rich oxides, on the roll surface. The black oxide layer acted as a barrier of thermal transfer between the rolls and melt, led to an increased gas gap and inhomogeneous solidification of cast strips, and, thus, played a role in forming both tortoise-shell-shaped depressions and microcracks on the strip surface. The installation of brush rolls behind the casting rolls was suggested as a method to prevent microcracks, because the brush rolls could continuously scrape off the black oxide layer affixed on the roll surface during strip casting.
Rapid-solidification experiments were conducted for understanding dent defects formed during strip casting of twin-induced plasticity (TWIP) steels. The rapid-solidification experiments reproduced the dent defects formed on these steels, which were generally located at valleys of the shot-blasted roughness on the substrate. The rapid-solidification experiment results reveal that the number of dips, the Mn content of the steel, and the surface roughness of the substrate affect the depth and size of dents formed on the solidified-shell surfaces, while the composition of the atmosphere gases and the carbon content of the steel are not factors. The formation of dents was attributed to the entrapment of gases inside the roughness valleys of the substrate surface and their volume expansion due to the temperature of the steel melt and the latent heat. The dents could be prevented when the thermal expansion of gases was suppressed by making longitudinal grooves on the substrate surface, which allowed the entrapped gases to escape. Sound solidified shells were obtained by optimizing the width and depth of the longitudinal grooves and by controlling the shot-blasting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.