We examined the size of the "safety margin," if any, by which the small intestine's daily capacities to absorb nutrients exceed prevailing daily intakes of those nutrients. This safety margin, also known as reserve capacity, is widely assumed to be enormously large. As a test, we suddenly transferred mice from an ambient temperature of 22 to 6 degrees C and measured food intake, apparent digestive efficiency, intestinal morphometrics, and intestinal brush-border uptake capacities for D-glucose and L-proline over the next 28 days. Food intake jumped 68% within the first 12 h and rose in 2 days to a new plateau level 2.5 times the previous intake. Nevertheless, apparent digestive efficiency remained unchanged, even within the first 12 h, and intestinal transit times also remained unchanged, implying the existence of at least some safety margin. Masses of the small and large intestine, liver, kidneys, and spleen nevertheless increased within 4 days by 16-20%. Glucose and proline uptakes per milligram intestine increased by approximately 5%, so that the intestine's summed uptake capacities for these solutes increased by 24-26%. The animal's intestinal adaptation expressed in these increased uptake capacities implies that safety margins at the new plateau value of food intake would otherwise have been dangerously narrow. Comparison of calculated summed uptake capacities with measured dietary intakes suggests that safety margins are approximately 220-300% in mice at 22 degrees C, only 27-50% in mice at 6 degrees C before intestinal adaptation, but 60-88% in mice at 6 degrees C after intestinal adaptation.
Carbon dioxide (CO2) has been anticipated as an ideal carbon building block for organic synthesis due to the noble properties of CO2, which are abundant renewable carbon feedstock, non-toxic nature, and contributing to a more sustainable use of resources. Several green and proficient routes have been established for chemical CO2 fixation. Among the prominent routes, this review epitomizes the reactions involving cycloaddition of epoxides with CO2 in producing cyclic carbonate. Cyclic carbonate has been widely used as a polar aprotic solvent, as an electrolyte in Li-ion batteries, and as precursors for various forms of chemical synthesis such as polycarbonates and polyurethanes. This review provides an overview in terms of the reaction mechanistic pathway and recent advances in the development of several classes of catalysts, including homogeneous organocatalysts (e.g., organic salt, ionic liquid, deep eutectic solvents), organometallic (e.g., mono-, bi-, and tri-metal salen complexes and non-salen complexes) and heterogeneous supported catalysts, and metal organic framework (MOF). Selection of effective catalysts for various epoxide substrates is very important in determining the cycloaddition operating condition. Under their catalytic systems, all classes of these catalysts, with regard to recent developments, can exhibit CO2 cycloaddition of terminal epoxide substrates at ambient temperatures and low CO2 pressure. Although highly desired conversion can be achieved for internal epoxide substrates, higher temperature and pressure are normally required. This includes fatty acid-derived terminal epoxides for oleochemical carbonate production. The production of fully renewable resources by employment of bio-based epoxy with biorefinery concept and potential enhancement of cycloaddition reactions are pointed out as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.