Partial or coronal pulpotomy, employed either as a primary pulp treatment or secondary to emergency pulp capping, had similarly satisfactory pulp survival rates.
Circular RNAs (circRNAs) play vital roles in AD pathogenesis. Thus, developing therapeutic candidates targeting circRNA may provide a novel therapeutic strategy for AD treatment. Our previous studies showed that Panax notoginseng saponins (PNS) could significantly prohibit the pathological progress of AD. However, the mechanisms by which PNS attenuates AD progression is still unclear. The present study shows that PNS may exhibit an ability to modulate the expression of AD-associated circRNAs. Specifically, PNS treatment leads to five circRNAs upregulation and two circRNAs downregulation, indicating that the therapeutic effect of PNS against AD may be associated with its role in the regulation of circRNA expression. Next, mmu_circRNA_013636 and mmu_circRNA_012180 were selected and GO and KEGG analyses were performed to further investigate the biological functions and potential mechanisms of these circRNAs. The results showed that the selected circRNAs were involved in AD-associated biological process and pathways, suggesting that these circRNAs may participate in AD pathogenesis. Collectively, our study indicates that the therapeutic effects of PNS on AD may be through modulating the expression of AD associated circRNAs and suggests that PNS is a potential circRNA-targeted agent against AD, which may provide useful resources for developing potential candidates targeting circRNAs against AD.
Lipid has been widely studied as a vehicle and loading vector, but there have been no reports of any such related application in the dental field. The purpose of this research was to fabricate and characterize a nano-size calcium-phosphate lipid (CL) system as a potential vehicle in dental regeneration study, wherein the biocompatibility with dental pulp stem cells (DPSCs) was evaluated. The effect of CL on DPSCs proliferation was analyzed by a CCK-8 assay, and the anti-inflammatory effect was investigated by quantitative polymerase chain reaction (qPCR). Moreover, the effect of CL on odontogenic differentiation of inflamed DPSCs (iDPSCs) was studied by Alizarin red staining, tissue-non-specific alkaline phosphatase (TNAP) staining, qPCR, and western blot analyses. The results of this study showed that CL did not affect the proliferation of DPSCs, it down-regulated the inflammatory-associated markers (IL-1β, IL-6, TNF-α, COX-2) of DPSCs treated with Escherichia coli lipopolysaccharide (LPS), and enhanced the in-vitro odontogenic differentiation potential of iDPSCs. This novel biomaterial has a broad application prospect for its bioactivity and flexible physical property, and thus represents a promising pulpal regeneration material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.