Since low bioavailability of YJA-20379-8 (3-butyryl-4-[5-R-(+)-methylbenzylamino]-8ethoxy-1,7-naph thy ridine), a new reversible proton pump inhibitor, has been reported after oral administration of the drug to rats, the first-pass organ of the drug was investigated in rats. YJA-20379-8, 50 mg kg(-1), was infused over 1 min via the jugular vein (n=5) or the portal vein (n=5), or was instilled directly into the stomach (n=5) or the duodenum (n=5). After intravenous or intraportal infusion of the drug, the total body clearance of YJA-20379-8 (18.1 and 19.7 mL min(-1) kg(- 1) based on plasma data) was considerably lower than the reported cardiac output (296 mL min(-1) kg(-1) based on blood data) in rats. This data indicated that the first-pass effect of YJA-20379-8 by the lung and heart was negligible. The areas under the plasma concentration-time curve from time zero to time infinity (AUC) after intravenous or intraportal administration of YJA-20379-8 (2760 and 2540 microg min mL(-1)) were not significantly different, indicating that the hepatic first-pass effect of the drug was also negligible in rats. After intragastric or intraduodenal instillation of YJA-20379-8, the extent of absolute oral bioavailability was 18.2 and 33.8%, respectively. Based on gastrointestinal recovery studies, approximately 86.5 and 91.2% of YJA-20379-8 was absorbed from rat gastrointestinal tract after intragastric or intraduodenal instillation, respectively. The data indicated that gastrointestinal and intestinal first-pass effects of YJA-20379-8 were approximately 68% (86.5-18.2) and 57% (91.2-33.8), respectively. The AUC(0-24h) values of YJA-20379-8 were significantly different between intragastric and intraduodenal instillation, indicating that the gastric first-pass effect of the drug was approximately 10% in rats. Therefore, it could be concluded that the low F value of YJA-20379-8 after oral administration of the drug could be due to a considerable (approx. 60%) intestinal first-pass effect in rats.
The absorption of YJA-20379-8 (3-butyryl-4-[5-(R)-(+)-methylbenzylamino]-8-ethoxy-1,7-naphthyrid ine) from various rat gastrointestinal segments was evaluated using in-situ closed-loops. The pharmacokinetics of the drug were also evaluated after oral administration to rats with acetic acid-induced gastric ulcer (AIURs). The concentrations of YJA-20379-8 in the biological samples were analyzed by HPLC. The absorption of YJA-20379-8 from stomach and jejunum was fast, but approximately 50% of the drug was recovered from each segment at 24 h. The total areas under the plasma concentration-time curves from time zero to 24h (AUC(0-24h)) were 161, 392, 233, 365, and 226 microg min mL(-1) for stomach, duodenum, jejunum, ileum, and colon, respectively. After oral administration of the drug, the plasma concentrations and the resultant AUC (0- 12h) were not significantly different between control and AIURs. The detection limits of YJA-20379-8 in human plasma and urine were 50 and 100 ng mL(-1), respectively. The results suggest that modification of the oral dose of YJA-20379-8 may not be required in gastric ulcer patients if the present rat pharmacokinetic data could be extrapolated to man.
The purpose of this study was to investigate the causes for the differences observed in the pharmacokinetics of YJA-20379-8 in 16-week-old spontaneously hypertensive rats (SHRs). To see if the hereditary characteristics of SHRs was the cause, 20 mg/kg of the drug was intravenously infused over 15 min and 50 mg/kg of the drug was orally administered to 6-week-old SHRs and 16-week-old SHRs and their age-matched control Kyoto-Wistar (KW) rats. Also to see if the hypertensive status itself was the cause, the same doses were administered to 16-week-old deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats (DOCA-salt rats) and their age-matched control Sprague-Dawley rats. The areas under the plasma concentration-time curve from time zero to time infinity (for intravenous study) and to the last sampling time in plasma (for oral study) were significantly smaller after both intravenous and oral administration, and the total body clearances of the drug were significantly faster after intravenous administration to 6-week-old SHRs, 16-week-old SHRs, and 16-week-old DOCA-salt rats than those in their respective age-matched control rats. The above pharmacokinetic parameter changes in 16-week-old SHRs were due to both hereditary characteristic of SHRs and the hypertensive status itself.
We have investigated the effect of the newly synthesized proton-pump inhibitor YJA20379-8, 3-butyryl-4-[R-1-methylbenzylamino]-8-ethoxy-1,7-naphthyridine, on gastric mucosal proton pump (H+/K+-ATPase) activity, gastric acid secretion and gastric lesions in experimental animals. In lyophilized pig gastric microsomes, YJA20379-8 was shown to inhibit H+/K+-ATPase activity; the inhibitory effect was not affected by pH, the IC50 (dose resulting in 50% inhibition) being 28.0 microM and 30.0 microM at pH 6.4 and pH 7.4, respectively. The effect was fully reversed by dilution and subsequent washing of the incubation mixtures of H+/K+-ATPase and YJA20379-8, suggesting the reversible nature of the enzyme inhibition. In pylorus-ligated rats, YJA20379-8 administered by different routes (intraduodenal, subcutaneous, intravenous or oral) resulted in dose-dependent suppression of basal gastric acid secretion. The duration of antisecretory action of 30 mg kg(-1) YJA20379-8 given intraduodenally was very brief (less than 7 h). Pretreatment with YJA20379-8 also dose-dependently prevented gastric lesions induced by absolute ethanol and water-immersion stress in rats. These results suggest that YJA20379-8 might exert its antiulcer activity partly by reversible suppression of acid secretion and partly by protecting the gastric mucosa against ulcerative stimuli.
Because physiological changes occurring in diabetes mellitus patients could alter the pharmacokinetics of the drugs used to treat the disease, the pharmacokinetics of a new proton pump inhibitor, YJA-20379-8, were investigated after intravenous and oral administration of the drug (50 mg kg(-1)) to control rats and to rats with streptozotocin-induced diabetes mellitus (SIDM). After intravenous administration of YJA-20379-8 to SIDM rats, plasma concentrations of the drug were significantly higher and this resulted in a significantly greater AUC (area under the concentration-time curve; 2520 +/- 366 compared with 1870+/-272 microg min mL(-1)). This was because of significantly slower clearance (CL; 19.5+/-2.88 compared with 27.2+/-3.93 mL min(-1) kg(-1)) in SIDM rats. The significantly slower metabolism of YJA-20379-8 in SIDM rats was confirmed by an in-vitro tissue metabolism study; the amounts of YJA-20379-8 remaining in the liver (27.1+/-5.19 compared with 18.9+/-8.24 microg(g tissue)(-1)) were significantly greater after 30-min incubation of the drug (50 microg) with supernatant fractions obtained from the tissues by centrifugation at 9000 g. After oral administration of YJA-20379-8 to SIDM rats the plasma concentrations of the drug were significantly lower and this resulted in significantly smaller AUC (128+/-31.0 compared with 219+/-45.6 microg min mL(-1)). This was because of reduced gastrointestinal absorption of YJA-20379-8 in SIDM rats; the amounts of the oral dose recovered as unchanged drug from the entire gastrointestinal tract after 24h were significantly greater (32.9 compared with 19.2%) in SIDM rats. The tissue distribution of YJA-20379-8 was not affected by SIDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.