Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles.
Nitrate aqueous solutions, Mg(NO(3))(2), Ca(NO(3))(2), Sr(NO(3))(2), and Pb(NO(3))(2), are investigated using Raman spectroscopy and free energy profiles from molecular dynamics (MD) simulations. Analysis of the in-plane deformation, symmetric stretch, and asymmetric stretch vibrational modes of the nitrate ions reveal perturbation caused by the metal cations and hydrating water molecules. Results show that Pb(2+) has a strong tendency to form contact ion pairs with nitrate relative to Sr(2+), Ca(2+), and Mg(2+), and contact ion pair formation decreases with decreasing cation size and increasing cation charge density: Pb(2+) > Sr(2+) > Ca(2+) > Mg(2+). In the case of Mg(2+), the Mg(2+)-OH(2) intermolecular modes indicate strong hydration by water molecules and no contact ion pairing with nitrate. Free energy profiles provide evidence for the experimentally observed trend and clarification between solvent-separated, solvent-shared, and contact ion pairs, particularly for Mg(2+) relative to other cations.
BackgroundCelastrol is an active ingredient of Chinese medicine Tripterygium wilfordii which is clinically used to treat the immune diseases. Currently, celastrol is documented as a potent agent for treating cancer and inflammatory disorders. This study was to investigate the effect of celastrol on cisplatin nephrotoxicity and the underlying mechanism.MethodsMale C57BL/6 mice were treated with cisplatin (20 mg/kg) with or without celastrol treatment (1 and 2 mg/kg/day). In vitro, human proximal tubule epithelial cell line (HK−2) and mouse renal tubule epithelial cells (RTECs) were treated with cisplatin (5 μg/mL) with or without celastrol administration. Then renal injury and cell damage were evaluated.FindingsIn vivo, after celastrol treatment, cisplatin-induced kidney injury was significantly ameliorated as shown by the improvement of renal function (BUN, serum creatinine, and cystatin C), kidney morphology (PAS staining) and oxidative stress (MDA) and the suppression of renal tubular injury markers of KIM-1 and NGAL. Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in celastrol-treated mice. In vitro, celastrol treatment markedly inhibited cisplatin-induced renal tubular cell apoptosis, suppressed NF-κB activation, and improved mitochondrial function evidenced by the restored mtDNA copy number, mitochondrial membrane potential, and OXPHOS activity in cisplatin-treated renal tubular epithelial cells.InterpretationThis work suggested that celastrol could protect against cisplatin-induced acute kidney injury possibly through suppressing NF-κB and improving mitochondrial function.FundThe National Natural Science Foundation of China, National Key Research and Development Program, and Natural Science Foundation of Jiangsu Province.
-Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (I/R) injury. The underlying epigenetic mechanism remains elusive. -We evaluated the potential role of megakaryocytic leukemia 1, or MKL1, as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. -Following I/R injury, MKL1 deficient (KO) mice exhibited smaller myocardial infarction along with improved heart function compared to wild type (WT) littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of I/R injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS and In response to I/R, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MφcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and ChIP assay revealed that MKL1 directly bound to the promoters of NADPH oxidase (NOX) genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hyoxia/re-oxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG-149 significantly down-regulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to I/R injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function following I/R in mice. -Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to I/R injury and as such have provided novel therapeutic targets in the treatment of ischemic heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.