Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important vegetable crop grown extensively worldwide. To facilitate the identification of agronomically important traits and provide new information for genetic and genomic research on this species, a high-density genetic linkage map of watermelon was constructed using an F2 population derived from a cross between elite watermelon cultivar K3 and wild watermelon germplasm PI 189225. Based on a sliding window approach, a total of 1,161 bin markers representing 3,465 SNP markers were mapped onto 11 linkage groups corresponding to the chromosome pair number of watermelon. The total length of the genetic map is 1,099.2 cM, with an average distance between bins of 1.0 cM. The number of markers in each chromosome varies from 62 in chromosome 07 to 160 in chromosome 05. The length of individual chromosomes ranged between 61.8 cM for chromosome 07 and 140.2 cM for chromosome 05. A total of 616 SNP bin markers showed significant (P < 0.05) segregation distortion across all 11 chromosomes, and 513 (83.3 %) of these distorted loci showed distortion in favor of the elite watermelon cultivar K3 allele and 103 were skewed toward PI 189225. The number of SNPs and InDels per Mb varied considerably across the segregation distorted regions (SDRs) on each chromosome, and a mixture of dense and sparse SNPs and InDel SDRs coexisted on some chromosomes suggesting that SDRs were randomly distributed throughout the genome. Recombination rates varied greatly among each chromosome, from 2.0 to 4.2 centimorgans per megabase (cM/Mb). An inconsistency was found between the genetic and physical positions on the map for a segment on chromosome 11. The high-density genetic map described in the present study will facilitate fine mapping of quantitative trait loci, the identification of candidate genes, map-based cloning, as well as marker-assisted selection (MAS) in watermelon breeding programs.
Diabetes mellitus is the most serious and prevalent metabolic disorders worldwide, complications of which can decrease significantly the quality of life and contribute to premature death. Resistance to insulin is a predominant pathophysiological factor of Type 2 diabetes (T2D). Protein tyrosine phosphatase 1B (PTP1B) is an important negative factor of insulin signal and a potent therapeutic target in T2D patients. This review highlights recent advances (2012-2015) in research related to the role of PTP1B in signal transduction processes implicated in pathophysiology of T2D, and novel PTP1B inhibitors with an emphasis on their chemical structures and modes of action.
The present study is designed to determine whether Huai Qi Huang has immunoregulatory effects on the (helper T (Th)) Th1/Th2 and regulatory T cell (Treg)/Th17 balance in ovalbumin (OVA)-induced asthma model mice. Asthma model mice were constructed by OVA treatment and Huai Qi Huang was administered. The amount of migrated inflammatory cells in the bronchoalveolar lavage fluid (BALF) from the OVA mice was counted. The total IgE in the sera was detected by the IgE ELISA kit. Cell suspensions from the lung were stained with antibodies specific for CD4 and the master transcription factors for Th1 (T-box expressed in T cells (T-bet)), Th2 (GATA-binding protein 3 (Gata-3)), Th17 (retinoic acid related orphan receptor γt (RORγt)), and Treg (forkhead box p3 (Foxp3)). The left lobe of the lung was used to prepare a single-cell suspension for flow cytometry to determine whether Huai Qi Huang influenced CD4+ T-cell subsets. Histological analyses were performed by using Hematoxylin and Eosin staining. The mRNA expression levels of the transcription factors were detected by using qRT-PCR. Huai Qi Huang inhibited infiltration of inflammatory cells into the lung, reduced influx of eosinophils (EOSs), lymphocytes (LYMs), neutrophils (NEUs), and macrophages (MACs) in the BALF, and decreased IgE in the serum in OVA-treated mice. Huai Qi Huang could regulate Th1/Th2 and Treg/Th17 via the re-balance of cytokine profiles and change the mRNA expression levels of the transcription factors, T-bet/Gata-3 and Foxp3/RORγt in OVA-treated mice. Our results showed that Huai Qi Huang could correct the imbalance of Th1/Th2 and Treg/Th17 in OVA-induced asthma model mice, indicating its effects on inhibiting the development and severity of asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.