Brightly luminescent copper nanoclusters (CuNCs) were prepared via a facile one-step synthesis in organic phase, and a novel luminescent nanoswitch on the basis of CuNCs through alternation of the physical states between aggregation and dispersion in response to specific external stimuli was designed. Two states including aggregation state and disaggregation state corresponding to fluorescence on and off signaling can be readily switched in a reversible way based on the aggregation-induced emission and disaggregation-induced quenching mechanism, respectively. This reversible nanoswitch can be controlled by the external stimulus water or N,N'-dicyclohexylcarbodiimide (DCC). The bright luminescence due to aggregation of CuNCs in organic solvents can be effectively quenched by the introduction of a small amount of water, where a disaggregation-induced quenching takes place. This specific behavior is capable to quantify an ultralow level (ppm) of water in aprotic solvents. The excellent reversibility of the nanoswitch enables one to monitor water content in a continuous and recyclable way.
Thiolated copper nanoclusters (CuNCs) with aggregation-induced emission characteristic are becoming a novel luminescent material, but it is still a challenging task to retain its bright luminescence in a neutral solution. In this work, we report a new copper nanocluster with aggregation-induced emission (AIE) enhancement property using a hydrophobic molecule as the protecting ligand, and brightly luminescent AIE particles of copper nanocluster were prepared via hydrophobic interaction. These CuNCs AIE particles possess uniform rod-like shapes, with sizes in hundreds of nanometer, and an intense luminescence; more importantly, its luminescence remains stable in neutral and alkaline solutions. It is found that 4-nitrophenol is able to effectively quench the luminescence of CuNC AIE particles through strong hydrophobic interaction and electron transfer between them. This strong quenching effect was adopted to develop a luminescent assay for β-galactosidase at physiological condition. This work presents a demonstration of preparing CuNC AIE particles with bright luminescence at neutral condition and gives an example of the use of AIE particles in monitoring the enzyme activity.
In this work, lignin/polyacrylonitrile composite fiber-based nonwoven membranes (L–PANs) were prepared by electrospinning with dispersing different amounts of lignin in the polyacrylonitrile (PAN) solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.