We investigated the relationship between basketball free-throw accuracy and anthropometry, physical fitness tests, and performance variables among 16 collegiate female basketball players. Each participant performed 20 basketball free throws. Anthropometric measures were height and weight; physical fitness tests were sit-and-reach, back strength, and grip strengths; other basketball performance variables were the phases of the pre-shoot routine: (a) time taken, (b) minimum angle when taking the ball back, (c) angle at ball release, (d) angular displacement during the forward arm swing, and (e) angular velocity at ball release on the elbow, shoulder, hip, knee, and ankle. We analyzed the correlation between free-throw accuracy and data on anthropometry and physical fitness, the time period and variability of the pre-shot routine, and kinematic data. There were negative correlations between free-throw accuracy and mean preshot time, and variability of the pre-shot time, indicating that participants with a shorter and less variable pre-shot time showed a higher free-throw accuracy. Angular displacement of the shoulder during the forward swing and angular velocity of the knee at ball release showed positive correlations with free-throw accuracy. There was also a negative correlation between freethrow accuracy and variability of angular displacement during the forward swing at the elbow, indicating that participants with smaller variability of angular displacement of the elbow showed higher free-throw accuracy. Some performance variables, including routine duration, angular displacement of the shoulder and elbow, and angular velocity of the knee, were related to freethrow accuracy.
We investigated the relationship between the free-throw accuracy and performance variables among fourteen elite male wheelchair basketball players. Participants performed 20 basketball free-throws. Basketball performance variables were the phases of the pre-shoot routine: (a) time taken, (b) minimum angle when taking the ball back, (c) angle at ball release, (d) angular displacement during the forward arm swing, and (e) angular velocity at ball release on the elbow, shoulder, and hip. A significant negative correlation was observed between the free-throw accuracy and mean pre-shot time, suggesting that participants with a shorter pre-shot time showed a higher free-throw accuracy. In addition, a significant negative correlation was found between the free-throw accuracy and variability of angular velocity of the hip at the time of ball release, indicating that the consistency of hip movement is an important factor in free-throw accuracy. In contrast, there were no relationship between the free-throw accuracy and player's classification point defined as International Wheelchair Basketball Federation, and experience of wheelchair basketball. These data suggest that the routine duration and trunk movement are related to free-throw accuracy in wheelchair basketball.
The authors investigated the kinematic characteristics of the standing long jump in preschool children. Sixty 4-year-old children (boys: 30 and girls: 30) and sixty 5-year-old children (boys: 30 and girls: 30) participated in the present study. The authors focused on three differences in kinematics: between 4- and 5-year-old children, between boys and girls, and between high and low jumping performance groups at the same age. The kinematic data included the maximum flexions of the knee and hip before takeoff, at takeoff, and on landing; angular displacement of the upper body; takeoff speeds in horizontal and vertical directions; and takeoff angle of the greater trochanter. Anthropometric variables and kinematic data were separately analyzed with factors of age, sex, and group. The authors also performed multiple regression analysis to identify predictors of the jump distance. The movement speed of the greater trochanter in a horizontal direction, the maximum flexion angle of the hip before takeoff, and the hip angle on landing were identified as significant predictors of the jump distance among young children. These findings suggest that knowing how to use the hip and awareness of the horizontal direction are key factors to improve the long jump distance in young children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.