Historic Prussian blue (PB) pigment is easily obtained as an insoluble precipitate in quantitative yield from an aqueous mixture of Fe 3+ and [Fe II (CN) 6 ] 4− (Fe 2+ and [Fe III (CN) 6 ] 3−). It has been found that the PB pigment is inherently an agglomerate of 10-20 nm nanoparticles, based on powder x-ray diffraction (XRD) line broadenings and transmission electron microscopy (TEM) images. The PB pigment has been revived as both organic-solvent-soluble and water-soluble nanoparticle inks. Through crystal surface modification with aliphatic amines, the nanoparticles are stably dispersed from the insoluble agglomerate into usual organic solvents to afford a transparent blue solution. Identical modification with [Fe(CN) 6 ] 4− yields water-soluble PB nanoparticles. A similar ink preparation is applicable to Ni-PBA and Co-PBA (nickel and cobalt hexacyanoferrates). The PB (blue), Ni-PBA (yellow), and Co-PBA (red) nanoparticles function as three primary colour inks.
We have revealed the fundamental mechanism of specific Cs(+) adsorption into Prussian blue (PB) in order to develop high-performance PB-based Cs(+) adsorbents in the wake of the Fukushima nuclear accident. We compared two types of PB nanoparticles with formulae of Fe(III)4[Fe(II)(CN)6]3·xH2O (x = 10-15) (PB-1) and (NH4)0.70Fe(III)1.10[Fe(II)(CN)6]·1.7H2O (PB-2) with respect to the Cs(+) adsorption ability. The synthesised PB-1, by a common stoichiometric aqueous reaction between 4Fe(3+) and 3[Fe(II)(CN)6](4-), showed much more efficient Cs(+) adsorption ability than did the commercially available PB-2. A high value of the number of waters of crystallization, x, of PB-1 was caused by a lot of defect sites (vacant sites) of [Fe(II)(CN)6](4-) moieties that were filled with coordination and crystallization water molecules. Hydrated Cs(+) ions were preferably adsorbed via the hydrophilic defect sites and accompanied by proton-elimination from the coordination water. The low number of hydrophilic sites of PB-2 was responsible for its insufficient Cs(+) adsorption ability.
Electrocatalytic water splitting to oxygen and hydrogen has much attention as one of the most promising approaches for sustainable production of hydrogen as a carbon-neutral fuel. To establish efficient electrocatalytic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.