The Drosophila fruitless (fru) gene product Fru has been postulated to be a neural sex determination factor that directs development of the central nervous system (CNS), thereby producing male-typical courtship behaviour and inducing male-specific muscle. Male-specific Fru protein is expressed in small groups of neurons scattered throughout the CNS of male, but not female, Drosophila. Collectively, these observations suggest that Fru 'masculinizes' certain neurons, thereby establishing neural substrates for male-typical behaviour. However, specific differences between neurons resulting from the presence or absence of Fru are unknown. Previous studies have suggested that Fru might result in sexual differences in the CNS at the functional level, as no overt sexual dimorphism in CNS structure was discernible. Here we identify a subset of fru-expressing interneurons in the brain that show marked sexual dimorphism in their number and projection pattern. We also demonstrate that Fru supports the development of neurons with male-specific dendritic fields, which are programmed to die during female development as a result of the absence of Fru. Thus, Fru expression can produce a male-specific neural circuit, probably used during heterosexual courtship, by preventing cell death in identifiable neurons.
The Drosophila fruitless (fru) gene encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the mechanism whereby fru establishes the sexual fate of neurons remains enigmatic. Here, we show that Fru forms a complex with the transcriptional cofactor Bonus (Bon), which, in turn, recruits either of two chromatin regulators, Histone deacetylase 1 (HDAC1), which masculinizes individual sexually dimorphic neurons, or Heterochromatin protein 1a (HP1a), which demasculinizes them. Manipulations of HDAC1 or HP1a expression change the proportion of male-typical neurons and female-typical neurons rather than producing neurons with intersexual characteristics, indicating that on a single neuron level, this sexual switch operates in an all-or-none manner.
Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.