Background The recurrence of regurgitation following surgical mitral valve (MV) repair remains a significant clinical problem. Mitral annuloplasty rings are commonly used in MV repair procedures. The purpose of this study was to demonstrate the feasibility of transvenous valve-in-ring (VIR) implantation using the Melody® valve, which is a valved-stent designed for percutaneous pulmonary valve replacement, and 4 distinct types of annuloplasty ring (AR) in an ovine model. Methods Ten sheep underwent surgical MV annuloplasty ring placement (N=10: CE-Physio [N=5]; partial ring [N=3]; flexible ring [N=1]; saddle ring [N=1]). All animals underwent cardiac catheterization, hemodynamic assessment, and Melody ViR implantation via a trans-femoral venous, trans-atrial septal approach, 1 week following surgery. Follow-up hemodynamic, angiographic, and echocardiographic data were recorded. Results Melody ViR implantation was technically successful in all but one animal. In this animal a 26 mm partial AR proved too large for secure anchoring of the Melody valve. In the remaining 9 animals, fluoroscopy showed the Melody devices securely positioned within the annuloplasty rings. Echocardiography revealed no perivalvular leak, and angiography revealed no left ventricular (LV) outflow tract obstruction, vigorous LV function, and no aortic valve insufficiency. The median procedure time was 55.5 (range 45–78) minutes. Conclusions This study demonstrates the feasibility of a purely percutaneous approach to MV replacement in patients with preexisting annuloplasty rings, regardless of ring type. This novel approach may be of particular benefit to patients with failed repair of ischemic MR, and in pediatric patients with complex structural heart disease.
Background There is continued need for therapies which reverse or abate the remodeling process following myocardial infarction (MI). In this study, we evaluate the longitudinal effects of calcium hydroxyapatite microsphere gel on regional strain, global ventricular function, and mitral regurgitation (MR) in a porcine MI model. Methods Twenty five Yorkshire swine were enrolled. Five were dedicated weight-matched controls. Twenty underwent posterolateral infarction by direct ligation of the circumflex artery and its branches. Infarcted animals were randomly divided into four groups: one week treatment, one week control, four week treatment, and four week control. Following infarction, animals received either twenty 150μl calcium hydroxyapatite gel or saline injections within the infarct. At their respective timepoints, echocardiograms, cardiac MRI, and tissue were collected for evaluation of MR, regional and global left ventricular function, wall thickness, and collagen content. Results Global and regional LV function were depressed in all infarcted subjects at one week compared to healthy controls. By four weeks post-infarction, global function had significantly improved in the calcium hydroxyapatite group compared to infarcted controls (EF 48.5±1.9% vs. 38.0±1.7%, p<0.01). Similarly, regional borderzone radial contractile strain (16.3±1.5% vs. 11.2±1.5%, p=0.04), MR grade (0.4±0.2 vs. 1.2±0.2, p=0.04), and infarct thickness (7.8±0.5mm vs. 4.5±0.2mm, p<0.01) were improved at this timepoint in the treatment group compared to infarct controls. Conclusions Calcium hydroxyapatite injection following MI progressively improves global LV function, borderzone function, and mitral regurgitation. Using novel biomaterials to augment infarct material properties is viable alternative in the current management of heart failure.
Deformable modeling with medial axis representation is a useful means of segmenting and parametrically describing the shape of anatomical structures in medical images. Continuous medial representation (cm-rep) is a “skeleton-first” approach to deformable medial modeling that explicitly parameterizes an object’s medial axis and derives the object’s boundary algorithmically. Although cm-rep has effectively been used to segment and model a number of anatomical structures with non-branching medial topologies, the framework is challenging to apply to objects with branching medial geometries since branch curves in the medial axis are difficult to parameterize. In this work, we demonstrate the first clinical application of a new “boundary-first” deformable medial modeling paradigm, wherein an object’s boundary is explicitly described and constraints are imposed on boundary geometry to preserve the branching configuration of the medial axis during model deformation. This “boundary-first” framework is leveraged to segment and morphologically analyze the aortic valve apparatus in 3D echocardiographic images. Relative to manual tracing, segmentation with deformable medial modeling achieves a mean boundary error of 0.41 ± 0.10 mm (approximately one voxel) in 22 3DE images of normal aortic valves at systole. Deformable medial modeling is additionally demonstrated on pathological cases, including aortic stenosis, Marfan syndrome, and bicuspid aortic valve disease. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.
Purpose Transcatheter mitral valve replacement would represent a major advance in heart valve therapy. Such a device requires a specialized anchoring and sealing technology. This study was designed to test the feasibility of a novel mitral valve replacement device (the sutureless mitral valve [SMV]) designed to anchor and seal in the mitral position without need for sutures. Description The SMV is a self-expanding device consisting of a custom-designed nitinol framework and a pericardial leaflet valve mechanism. Evaluation Ten sheep underwent successful surgical SMV device implantation. All animals underwent cardiac catheterization 6 hours postoperatively. Hemodynamic, angiographic, echocardiographic and necroscopic data were recorded. The mean aortic cross-clamp time was 9.5 ± 3.1 minutes. Echocardiography and angiography revealed excellent left ventricular systolic function, no significant perivalvular leak, no mitral valve stenosis, no left ventricular outflow tract obstruction, and no aortic valve insufficiency. Necropsy demonstrated that the SMV devices were anchored securely. Conclusions This study demonstrates the feasibility and short-term success of sutureless mitral valve replacement using a novel SMV device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.