Ice accretion on rotary-wing unmanned aerial vehicles (RWUAVs) needs to be studied separately from the fixed-wing UAVs because of the additional flow complexities induced by the propeller rotation. The aerodynamics of rotatory wings are extremely challenging compared to the fixed-wing configuration. Atmospheric icing can be considered a hazard that can plague the operation of UAVs, especially in the Arctic region, as it can impose severe aerodynamic penalties on the performance of propellers. Rotary-wing structures are more prone to ice accretion and ice shedding because of the centrifugal force due to rotational motion, whereby the shedding of the ice can lead to mass imbalance and vibration. The nature of ice accretion on rotatory wings and associated performance degradation need to be understood in detail to aid in the optimum design of rotary-wing UAVs, as well as to develop adequate ice mitigation techniques. Limited research studies are available about icing on rotary wings, and no mature ice mitigation technique exists. Currently, there is an increasing interest in research on these topics. This paper provides a comprehensive review of studies related to icing on RWUAVs, and potential knowledge gaps are also identified.
Ice accretion on commercial aircraft operating at high Reynolds numbers has been extensively studied in the literature, but a direct transformation of these results to an Unmanned Aerial Vehicle (UAV) operating at low Reynolds numbers is not straightforward. Changes in Reynolds number have a significant impact on the ice accretion physics. Previously, only a few researchers worked in this area, but it is now gaining more attention due to the increasing applications of UAVs in the modern world. As a result, an attempt is made to review existing scientific knowledge and identify the knowledge gaps in this field of research. Ice accretion can deteriorate the aerodynamic performance, structural integrity, and aircraft stability, necessitating optimal ice mitigation techniques. This paper provides a comprehensive review of ice accretion on fixed-wing UAVs. It includes various methodologies for studying and comprehending the physics of ice accretion on UAVs. The impact of various environmental and geometric factors on ice accretion physics is reviewed, and knowledge gaps are identified. The pros and cons of various ice detection and mitigation techniques developed for UAVs are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.