SummaryBackground and objectives Inaccurate determination of baseline kidney function can misclassify acute kidney injury (AKI) and affect the study of AKI-related outcomes. No consensus exists on how to optimally determine baseline kidney function when multiple preadmission creatinine measurements are available.Design, setting, participants, & measurements The accuracy of commonly used methods for estimating baseline serum creatinine was compared with that of a reference standard adjudicated by a panel of board-certified nephrologists in 379 patients with AKI or CKD admitted to a tertiary referral center.Results Agreement between estimating methods and the reference standard was highest when using creatinine values measured 7-365 days before admission. During this interval, the intraclass correlation coefficient (ICC) for the mean outpatient serum creatinine level (0.91 [95% confidence interval (CI), 0.88-0.92]) was higher than the most recent outpatient (ICC, 0.84 [95% CI, 0.80-0.88]; P,0.001) and the nadir outpatient (ICC, 0.83 [95% CI, 0.76-0.87; P,0.001) serum creatinine. Using the final creatinine value from a prior inpatient admission increased the ICC of the most recent outpatient creatinine method (0.88 [95% CI,). Performance of all methods declined or was unchanged when the time interval was broadened to 2 years or included serum creatinine measured within a week of admission. ConclusionsThe mean outpatient serum creatinine measured within a year of hospitalization most closely approximates nephrologist-adjudicated serum creatinine values.
The kidney collecting system develops from branching morphogenesis of the ureteric bud (UB). This process requires signaling by growth factors such as glial cell line derived neurotrophic factor (GDNF) and fibroblast growth factors (FGFs) as well as cell extracellular matrix interactions mediated by integrins. The importance of integrin signaling in UB development was investigated by deleting integrin β1 at initiation (E10.5) and late (E18.5) stages of development. Deletion at E10.5 resulted in a severe branching morphogenesis phenotype. Deletion at E18.5 did not alter renal development but predisposed the collecting system to severe injury following ureteric obstruction. β1 integrin was required for renal tubular epithelial cells to mediate GDNF-and FGF-dependent signaling despite normal receptor localization and activation in vitro. Aberrations in the same signaling molecules were present in the β1-null UBs in vivo. Thus β1 integrins can regulate organ branching morphogenesis during development by mediating growthfactor-dependent signaling in addition to their well-defined role as adhesion receptors.
Glomerular podocyte differentiation state is critical for filtration barrier function and is regulated by WT1, a zinc finger transcription factor. A yeast two-hybrid assay identified a novel, WT1-interacting protein (WTIP) that maps to human chromosome 19q13.1, a region with genes linked to familial focal segmental glomerulosclerosis. The domain structure of WTIP is similar to the zyxin subfamily of cytosolic LIM domain-containing proteins, which contain three carboxyl-terminal LIM protein-protein interaction domains and a proline-rich, pre-LIM region with a nuclear export signal. Other LIM domain-containing proteins (zyxin and mouse muscle LIM protein) did not interact with WT1 in two-hybrid assays, and WTIP did not interact with an unrelated transcription factor, LMX1B. WTIP mRNA was detected in cultured podocytes and was developmentally regulated, with expression peaking in mouse kidney at embryonic day 15-16 (E15-E16) in kidney but persisting into adulthood. In situ hybridization demonstrated WTIP expression in developing E15 glomeruli and in cultured podocytes. The partial WTIP clone, which interacted with WTIP in the two-hybrid assay, co-localized with WT1 in nuclei, co-precipitated with WT1, and inhibited WT1-dependent transcriptional activation of the amphiregulin promoter. In contrast, full-length WTIP was excluded from cell nuclei, but after the addition of leptomycin B, an inhibitor of Crm1-mediated nuclear export, it accumulated in the nucleus and co-precipitated with WT1 in whole cell lysates. Epitope-tagged WTIP co-localized with the adaptor protein CD2AP (CMS) in podocyte actin spots and with Mena at cell-cell junctions. We propose that WTIP monitors slit diaphragm protein assembly as part of a multiple protein complex, linking this specialized adhesion junction to the actin cytoskeleton, and shuttles into the nucleus after podocyte injury, providing a mechanism whereby changes in slit diaphragm structure modulate gene expression.Podocytes are highly specialized epithelial cells, which synthesize components of glomerular basement membrane, elaborate interdigitating foot processes from adjacent cells that encircle capillaries and are bridged by extracellular proteins of the slit diaphragm. In proteinuric renal diseases, podocytes undergo stereotypic phenotypic simplification into a cuboidal shape, characterized by foot process fusion and retraction and loss of filtration barrier function. Although persistent podocyte dysregulation is associated with glomerular scarring, this phenotype switch is reversible. Appropriate therapy can restore normal podocyte structure and function, suggesting a dynamic, regulated process. Positional cloning and gene targeting have identified the proteins critical for normal podocyte function. However, in the absence of mutations, molecular mechanisms that regulate podocyte phenotype remain unclear. Given its unique microenvironment with exposure to hemodynamic forces and high flow of ultrafiltrate, we speculated that podocytes express intracellular molecules that relay ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.