The Industrial Internet of Things (IIoT) is gaining importance as most technologies and applications are integrated with the IIoT. Moreover, it consists of several tiny sensors to sense the environment and gather the information. These devices continuously monitor, collect, exchange, analyze, and transfer the captured data to nearby devices or servers using an open channel, i.e., internet. However, such centralized system based on IIoT provides more vulnerabilities to security and privacy in IIoT networks. In order to resolve these issues, we present a blockchain-based deep-learning framework that provides two levels of security and privacy. First a blockchain scheme is designed where each participating entities are registered, verified, and thereafter validated using smart contract based enhanced Proof of Work, to achieve the target of security and privacy. Second, a deep-learning scheme with a Variational AutoEncoder (VAE) technique for privacy and Bidirectional Long Short-Term Memory (BiLSTM) for intrusion detection is designed. The experimental results are based on the IoT-Botnet and ToN-IoT datasets that are publicly available. The proposed simulations results are compared with the benchmark models and it is validated that the proposed framework outperforms the existing system.
With the rapid development of emerging 5G and beyond (B5G), Unmanned Aerial Vehicles (UAVs) are increasingly important to improve the performance of dense cellular networks. As a conventional metric, coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment. In recent years, stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems. In this paper, an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed. An assumption was considered that all users are distributed according to Poisson Cluster Process (PCP) around base stations, in particular, Thomas Cluster Process (TCP). Using this model, the impact of beam alignment errors on the coverage probability was investigated. Initially, the Probability Density Function (PDF) of directional antenna gain between the user and its serving base station was obtained. Then, association probability with each tier was achieved. A tractable expression was derived for coverage probability in both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) condition links. Numerical results demonstrated that at low UAVs altitude, beam alignment errors significantly degrade coverage performance. Moreover, for a small cluster size, alignment errors do not necessarily affect the coverage performance.
Applications of internet-of-things (IoT) are increasingly being used in many facets of our daily life, which results in an enormous volume of data. Cloud computing and fog computing, two of the most common technologies used in IoT applications, have led to major security concerns. Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient. Several artificial intelligence (AI) based security solutions, such as intrusion detection systems (IDS), have been proposed in recent years. Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require the use of feature selection (FS) techniques to increase classification accuracy by minimizing the number of features selected. On the other hand, metaheuristic optimization algorithms have been widely used in feature selection in recent decades. In this paper, we proposed a hybrid optimization algorithm for feature selection in IDS. The proposed algorithm is based on grey wolf (GW), and dipper throated optimization (DTO) algorithms and is referred to as GWDTO. The proposed algorithm has a better balance between the exploration and exploitation steps of the optimization process and thus could achieve better performance. On the employed IoT-IDS dataset, the performance of the proposed GWDTO algorithm was assessed using a set of evaluation metrics and compared to other optimization approaches in 2678 CMC, 2023, vol.74, no.2 the literature to validate its superiority. In addition, a statistical analysis is performed to assess the stability and effectiveness of the proposed approach. Experimental results confirmed the superiority of the proposed approach in boosting the classification accuracy of the intrusion in IoT-based networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.