This assignment applies to all translations of the Work as well as to preliminary display/posting of the abstract of the accepted article in electronic form before publication. If any changes in authorship (order, deletions, or additions) occur after the manuscript is submitted, agreement by all authors for such changes must be on file with the Publisher. An author's name may be removed only at his/her written request. (Note: Material prepared by employees of the US government in the course of their official duties cannot be copyrighted.
Objective To study the fracture resistance and stress distribution pattern of translucent zirconia and fiber-reinforced composite cantilever resin-bonded fixed dental prostheses (RPFDPs) with two retainer designs. Materials and methods Forty human mandibular molars were divided into two groups according to the retainer design. The restorations included a premolar pontic and 2 retainer designs: (D1) inlay ring retainer and (D2) lingual coverage retainer. Each main group was then divided according to the material used (n = 10): zirconia (Z) or fiber-reinforced composite (FRC) (F). Restorations were cemented using dual polymerizing adhesive luting resin. All specimens were thermo-cycled (5–55 °C for 10,000 cycles), then subjected to dynamic loading (50 N, 240,000, and 1.6 Hz) and fracture resistance test. The finite element analysis includes the two models of retainer designs used in the in vitro test. Modified von Mises stress values on enamel, dentin, luting resin, and restorations were examined when the restorations failed. Results A significantly higher failure load was recorded for zirconia groups (505.00 ± 61.50 and 548.00 ± 75.63 N for D1Z and D2Z, respectively) than for FRC groups (345.00 ± 42.33 and 375.10 ± 53.62 N for D1F and D2F, respectively) (P = 0.001). With regard to failure mode, D2 showed a more favorable failure pattern than D1. Model D2 resulted in lower stresses in tooth structure than model D1, and zirconia transmitted more stresses to the tooth structure than FRC. Conclusions The lingual coverage retainer (D2) enhanced the biomechanical performance of the restoration/tooth complex. Considering the failure mode and tooth stress, FRC is a promising treatment option when constructing a cantilever RPFDP. Clinical relevance Dentists should be aware of the biomechanical behavior during the selection of the material and for the replacement of a single missing mandibular premolar tooth with minimally invasive RBFDP.
To evaluate the fracture load and stress magnitude of different retainer designs of minimally invasive cantilever resin-bonded fixed dental prostheses (RBFDPs) after artificial aging. Materials and methods: Fifty caries-free human mandibular molars were prepared as abutments for cantilever fixed dental prostheses using different retainer designs: one wing (OW), two wings (TW), inlay ring (IR), lingual coverage (LC), and occlusal coverage (OC). Computer-aided design and computer-aided manufacturing were used for milling the RBFDPs using fiber-reinforced composite (FRC), and the restorations were adhesively bonded. The specimens were then subjected to thermomechanical aging and loaded until failure. The 3D finite element analysis (FEA) was performed with five models of retainer designs similar to the in vitro test. Modified von Mises stress values on enamel, dentine, luting resin, and restorations were examined. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (p < 0.001). Results: A statistically significant difference (p < 0.001) was found between all groups except between IR and LC and between OW and TW designs, with the highest mean failure load detected for OC (534.70 N) and the lowest detected for OW (129.80 N). With regard to failure mode, OW, TW, and LC showed more incidences of favorable failure patterns than IR and OC designs. FEA showed that FRC transmitted low stresses in tooth structure and high stresses to the luting resin. Conclusions: LC and OC designs can be used to design cantilever RBFDPs in premolar area. IR design transmitted more stresses to the tooth structure and resulted in 30% catastrophic failure. OW and TW were below the normal occlusal force and should be carefully used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.