Accurate soil prediction is a vital parameter involved to decide appropriate crop, which is commonly carried out by the farmers. Designing an automated soil prediction tool helps to considerably improve the efficacy of the farmers. At the same time, fuzzy logic (FL) approaches can be used for the design of predictive models, particularly, Fuzzy Cognitive Maps (FCMs) have involved the concept of uncertainty representation and cognitive mapping. In other words, the FCM is an integration of the recurrent neural network (RNN) and FL involved in the knowledge engineering phase. In this aspect, this paper introduces effective fuzzy cognitive maps with cat swarm optimization for automated soil classification (FCMCSO-ASC) technique. The goal of the FCMCSO-ASC technique is to identify and categorize seven different types of soil. To accomplish this, the FCMCSO-ASC technique incorporates local diagonal extrema pattern (LDEP) as a feature extractor for producing a collection of feature vectors. In addition, the FCMCSO model is applied for soil classification and the weight values of the FCM model are optimally adjusted by the use of CSO algorithm. For examining the enhanced soil classification outcomes of the FCMCSO-ASC technique, a series of simulations were carried out on benchmark dataset and the experimental outcomes reported the enhanced performance of the FCMCSO-ASC technique over the recent techniques with maximum accuracy of 96.84%.
Fake news and its significance carried the significance of affecting diverse aspects of diverse entities, ranging from a city lifestyle to a country global relativity, various methods are available to collect and determine fake news. The recently developed machine learning (ML) models can be employed for the detection and classification of fake news. This study designs a novel Chaotic Ant Swarm with Weighted Extreme Learning Machine (CAS-WELM) for Cybersecurity Fake News Detection and Classification. The goal of the CAS-WELM technique is to discriminate news into fake and real. The CAS-WELM technique initially pre-processes the input data and Glove technique is used for word embedding process. Then, N-gram based feature extraction technique is derived to generate feature vectors. Lastly, WELM model is applied for the detection and classification of fake news, in which the weight value of the WELM model can be optimally adjusted by the use of CAS algorithm. The performance validation of the CAS-WELM technique is carried out using the benchmark dataset and the results are inspected under several dimensions. The experimental results reported the enhanced outcomes of the CAS-WELM technique over the recent approaches.
A cyber physical energy system (CPES) involves a combination of processing, network, and physical processes. The smart grid plays a vital role in the CPES model where information technology (IT) can be related to the physical system. At the same time, the machine learning (ML) models find useful for the smart grids integrated into the CPES for effective decision making. Also, the smart grids using ML and deep learning (DL) models are anticipated to lessen the requirement of placing many power plants for electricity utilization. In this aspect, this study designs optimal multi-head attention based bidirectional long short term memory (OMHA-MBLSTM) technique for smart grid stability prediction in CPES. The proposed OMHA-MBLSTM technique involves three subprocesses such as pre-processing, prediction, and hyperparameter optimization. The OMHA-MBLSTM technique employs min-max normalization as a pre-processing step. Besides, the MBLSTM model is applied for the prediction of stability level of the smart grids in CPES. At the same time, the moth swarm algorithm (MHA) is utilized for optimally modifying the hyperparameters involved in the MBLSTM model. To ensure the enhanced outcomes of the OMHA-MBLSTM technique, a series of simulations were carried out and the results are inspected under several aspects. The experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent models.
The recently developed machine learning (ML) models have the ability to obtain high detection rate using biomedical signals. Therefore, this article develops an Optimal Sparse Autoencoder based Sleep Stage Classification Model on Electroencephalography (EEG) Biomedical Signals, named OSAE-SSCEEG technique. The major intention of the OSAE-SSCEEG technique is to find the sleep stage disorders using the EEG biomedical signals. The OSAE-SSCEEG technique primarily undergoes preprocessing using min-max data normalization approach. Moreover, the classification of sleep stages takes place using the Sparse Autoencoder with Smoothed Regularization (SAE-SR) with softmax (SM) approach. Finally, the parameter optimization of the SAE-SR technique is carried out by the use of Coyote Optimization Algorithm (COA) and it leads to boosted classification efficiency. In order to ensure the enhanced performance of the OSAE-SSCEEG technique, a wide ranging simulation analysis is performed and the obtained results demonstrate the betterment of the OSAE-SSCEEG technique over the recent methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.