Context-based pairing solutions increase the usability of IoT device pairing by eliminating any human involvement in the pairing process. This is possible by utilizing on-board sensors (with same sensing modalities) to capture a common physical context (e.g., ambient sound via each device's microphone). However, in a smart home scenario, it is impractical to assume that all devices will share a common sensing modality. For example, a motion detector is only equipped with an infrared sensor while Amazon Echo only has microphones. In this paper, we develop a new context-based pairing mechanism called Perceptio that uses time as the common factor across differing sensor types. By focusing on the event timing, rather than the specific event sensor data, Perceptio creates event fingerprints that can be matched across a variety of IoT devices. We propose Perceptio based on the idea that devices co-located within a physically secure boundary (e.g., single family house) can observe more events in common over time, as opposed to devices outside. Devices make use of the observed contextual information to provide entropy for Perceptio's pairing protocol. We design and implement Perceptio, and evaluate its effectiveness as an autonomous secure pairing solution. Our implementation demonstrates the ability to sufficiently distinguish between legitimate devices (placed within the boundary) and attacker devices (placed outside) by imposing a threshold on fingerprint similarity. Perceptio demonstrates an average fingerprint similarity of 94.9% between legitimate devices while even a hypothetical impossibly well-performing attacker yields only 68.9% between itself and a valid device.
Occupant identification proves crucial in many smart home applications such as automated home control and activity recognition. Previous solutions are limited in terms of deployment costs, identification accuracy, or usability. We propose SenseTribute , a novel occupant identification solution that makes use of existing and prevalent on-object sensors that are originally designed to monitor the status of objects to which they are attached. SenseTribute extracts richer information content from such on-object sensors and analyzes the data to accurately identify the person interacting with the objects. This approach is based on the physical phenomenon that different occupants interact with objects in different ways. Moreover, SenseTribute may not rely on users’ true identities, so the approach works even without labeled training data. However, resolution of information from a single on-object sensor may not be sufficient to differentiate occupants, which may lead to errors in identification. To overcome this problem, SenseTribute operates over a sequence of events within a user activity, leveraging recent work on activity segmentation. We evaluate SenseTribute using real-world experiments by deploying sensors on five distinct objects in a kitchen and inviting participants to interact with the objects. We demonstrate that SenseTribute can correctly identify occupants in 96% of trials without labeled training data, while per-sensor identification yields only 74% accuracy even with training data.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.