Introduction
X-linked hypophosphatemia (XLH) is a rare inherited cause of hypophosphatemic rickets and osteomalacia. It is caused by mutations in the phosphate-regulating endopeptidase homolog, X-linked (PHEX). This results in increased plasma fibroblast growth factor-23 (FGF23), which leads to loss of renal sodium-phosphate co-transporter expression leading to chronic renal phosphate excretion. It also leads to low serum 1,25-dihydroxyvitamin D (1,25(OH)2D), resulting in impaired intestinal phosphate absorption. Chronic hypophosphatemia in XLH leads to impaired endochondral mineralization of the growth plates of long bones with bony deformities. XLH in children and adolescents also causes impaired growth, myopathy, bone pain, and dental abscesses. XLH is the most frequent inherited cause of phosphopenic rickets/osteomalacia. Hypophosphatemia is also found in calcipenic rickets/osteomalacia as a result of secondary hyperparathyroidism. Thus, chronic hypophosphatemia is a common etiologic factor in all types of rickets.
Results
There is considerable overlap between symptoms and signs of phosphopenic and calcipenic rickets/osteomalacia. Wrong diagnosis leads to inappropriate treatment of rickets/osteomalacia. Nutritional rickets and osteomalacia are common in the Gulf Cooperation Council countries which include Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman. Due to high levels of consanguinity in the region, genetic causes of phosphopenic and calcipenic rickets/osteomalacia are also common.
Conclusion
This guideline was developed to provide an approach to the diagnosis of XLH, especially where there is no family history of the disease, and that other related conditions are not mistaken for XLH. We also guide the medical management of XLH with conventional treatment and with burosumab, a recombinant human IgG1 monoclonal antibody to FGF23.
The potential role of certain important immunoregulatory and effector cytokines in autoimmune neuroinflammation have been studied. We have examined the expression of mRNA, with in situ hybridization, of interferon gamma (IFN-gamma), interleukin 4 (IL-4) and transforming growth factor beta (TGF-beta) both in sections of spinal cords and the antigen-induced expression of these cytokines by lymphoid cells after stimulation with a dominant encephalitogenic peptide of MBP (MBP 63-88) during the course of actively induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats. In spinal cords, the target organ in EAE, cells expressing mRNA for IFN-gamma, first appeared at the onset of clinical signs, i.e., day 10 postimmunization (p.i.), peaked at the height of disease (day 13 p.i.) and then gradually decreased concomitant with recovery. Very few IL-4 mRNA-expressing cells appeared in the spinal cord with no clear relation to clinical signs or histopathology. In contrast, expression of mRNA for TGF-beta did not increase until day 13 p.i., at height of the disease, shortly preceding recovery. These data are consistent with a disease upregulating role of IFN-gamma, while TGF-beta may act to limit central nervous system (CNS) inflammation. In lymphoid organs, primed MBP 63-88 reactive T cells showed an interesting time-dependent evolution of their cytokine production in vitro. Thus, early after immunization there was a conspicuous MBP 63-88-induced production of both IFN-gamma and IL-4. Such cells may act in the initiation and promotion of the disease. Later, in the recovery phase, MBP 63-88 induced lymphoid cells to TGF-beta production. Thus, an autoantigen-specific production of TGF-beta occurred during EAE and hypothetically such a mechanism may serve to downregulate aggressive autoimmunity systemically.
ObjectivesThe objective of this study is to assess the presence of plaque, gingivitis, and caries in a group of Sudanese children with congenital heart defects CHDs (cases) and compare them to children without CHDs (controls).Materials and methodsThis analytical cross-sectional study included cases (N = 111, with a mean age of 7.2 ± 3.0 years) and controls (N = 182, with a mean age of 7.2 ± 2.8 years) from Khartoum, Sudan. Examinations were done by two calibrated dentists using plaque index, gingival index, and WHO (World Health Organization) caries diagnostic criteria (dmft/DMFT index: decayed, missing, and filled teeth).ResultsChildren with CHDs (cases) had statistically significantly higher mean number of sites with plaque and gingivitis than children without CHDs (controls), although almost all children experienced plaque. Cases also experienced significantly higher mean dmft/DMFT than controls (age group 1, 3–7 years: 3.7 vs 2.3 and age group 2, 8–12 years: 1.3 vs 0.6). The Significant Caries Indices in cases (age groups 1 and 2) were also significantly higher than among controls (SiC 8.2 vs 5.9 and 1.8 vs 0.8, respectively). Fillings were totally lacking among cases and scarce among controls.ConclusionsThe findings clearly showed that this group of Sudanese children with CHDs was more severely affected with gingivitis and caries than the control group without CHDs. These results are cause for concern in children at risk of developing systemic infections and serious complications related to poor oral health.Clinical relevanceThese findings provide important baseline data for planning appropriate dental preventive strategies for Sudanese children with CHDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.