Tuberculosis (TB) disease still remain a major global threat due to the growing number of drug-resistant species and global warming. Despite the fact that there are new molecular diagnostic approaches, however, majority of developing countries and remote clinics depends on conventional approaches such as Tuberculin test, microscopic examinations and radiographic imaging (Chest X-ray). These techniques are hindered by several challenges which can lead to miss-diagnosis especially when interpreting large number of sample cases. Thus, in order to reduce workload and prevent miss-diagnosis, scientists incorporated computer-aided technology for detection of medical images known as Computer aided Detection (CADe) or Diagnosis (CADx). The use of AI-powered techniques has shown to improve accuracy, sensitivity, specificity. In this review, we discussed about the epidemiology, pathology, diagnosis and treatment of tuberculosis. The review also provides background information on Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Transfer Learning (TL) and their applications in detection of tuberculosis from both microscopic slide images and X-ray images. The review also proposed an IoT/AI powered system which allows transfer of results obtained from DL models with end users through internet networks. The concept of futuristic diagnosis, limitations of current techniques and open research issues are also discussed.
Tropical diseases (TDs) are among the leading cause of mortality and fatality globally. The emergence and reemergence of TDs continue to challenge healthcare system. Several tropical diseases such as yellow fever, tuberculosis, cholera, Ebola, HIV, rotavirus, dengue, and malaria outbreaks have led to endemics and epidemics around the world, resulting in millions of deaths. The increase in climate change, migration and urbanization, overcrowding, and other factors continue to increase the spread of TDs. More cases of TDs are recorded as a result of substandard health care systems and lack of access to clean water and food. Early diagnosis of these diseases is crucial for treatment and control. Despite the advancement and development of numerous diagnosis assays, the healthcare system is still hindered by many challenges which include low sensitivity, specificity, the need of trained pathologists, the use of chemicals and a lack of point of care (POC) diagnostic. In order to address these issues, scientists have adopted the use of CRISPR/Cas systems which are gene editing technologies that mimic bacterial immune pathways. Recent advances in CRISPR-based biotechnology have significantly expanded the development of biomolecular sensors for diagnosing diseases and understanding cellular signaling pathways. The CRISPR/Cas strategy plays an excellent role in the field of biosensors. The latest developments are evolving with the specific use of CRISPR, which aims for a fast and accurate sensor system. Thus, the aim of this review is to provide concise knowledge on TDs associated with mosquitoes in terms of pathology and epidemiology as well as background knowledge on CRISPR in prokaryotes and eukaryotes. Moreover, the study overviews the application of the CRISPR/Cas system for detection of TDs associated with mosquitoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.