An active research area where the experts from the medical field are trying to envisage the problem with more accuracy is diabetes prediction. Surveys conducted by WHO have shown a remarkable increase in the diabetic patients. Diabetes generally remains in dormant mode and it boosts the other diseases if patients are diagnosed with some other disease such as damage to the kidney vessels, problems in retina of the eye, and cardiac problem; if unidentified, it can create metabolic disorders and too many complications in the body. The main objective of our study is to draw a comparative study of different classifiers and feature selection methods to predict the diabetes with greater accuracy. In this paper, we have studied multilayer perceptron, decision trees, K-nearest neighbour, and random forest classifiers and few feature selection techniques were applied on the classifiers to detect the diabetes at an early stage. Raw data is subjected to preprocessing techniques, thus removing outliers and imputing missing values by mean and then in the end hyperparameters optimization. Experiments were conducted on PIMA Indians diabetes dataset using Weka 3.9 and the accuracy achieved for multilayer perceptron is 77.60%, for decision trees is 76.07%, for K-nearest neighbour is 78.58%, and for random forest is 79.8%, which is by far the best accuracy for random forest classifier.
The tumour is fundamentally an excessive development of dangerous cells in any part of the body, while a tumour in a brain is an unreasonable development of cancerous cells in the brain. Brain tumour can be either benign or malignant. The benign brain tumour has structural consistency and does not include active (cancer) cells, but the malignant brain tumour has no structure consistency and includes active cells. The primary concern is to segment, detect, and extract the infected tumour area from magnetic resonance images (MRI) which are being performed by radiologists or medical experts, and their accuracy is totally dependent on their experience only. Thus, it becomes very essential to overcome these limitations by the use of artificial intelligence. The current paper uses various machine learning algorithms as well as their features to design a structure to predict brain tumour at an early phase by using different classifiers and comparing their respective accuracy parameters.
Diabetes is a chronic disease characterized by a high amount of glucose in the blood and can cause too many complications also in the body, such as internal organ failure, retinopathy, and neuropathy. According to the predictions made by WHO, the figure may reach approximately 642 million by 2040, which means one in a ten may suffer from diabetes due to unhealthy lifestyle and lack of exercise. Many authors in the past have researched extensively on diabetes prediction through machine learning algorithms. The idea that had motivated us to present a review of various diabetic prediction models is to address the diabetic prediction problem by identifying, critically evaluating, and integrating the findings of all relevant, high-quality individual studies. In this paper, we have analysed the work done by various authors for diabetes prediction methods. Our analysis on diabetic prediction models was to find out the methods so as to select the best quality researches and to synthesize the different researches. Analysis of diabetes data disease is quite challenging because most of the data in the medical field are nonlinear, nonnormal, correlation structured, and complex in nature. Machine learning-based algorithms have been ruled out in the field of healthcare and medical imaging. Diabetes mellitus prediction at an early stage requires a different approach from other approaches. Machine learning-based system risk stratification can be used to categorize the patients into diabetic and controls. We strongly recommend our study because it comprises articles from various sources that will help other researchers on various diabetic prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.