The results imply the rarity of abnormalities affecting the six genes in patients with CPHD and the significance of the gene copy number analysis in such patients.
Combined pituitary hormone deficiency (CPHD), isolated hypogonadotropic hypogonadism (IHH), Kallmann syndrome (KS), and septo-optic dysplasia (SOD) are genetically related conditions caused by abnormal development of the anterior midline in the forebrain. Although mutations in the fibroblast growth factor receptor 1 (FGFR1) gene have been implicated in the development of IHH, KS, and SOD, the relevance of FGFR1 abnormalities to CPHD remains to be elucidated. Here, we report a Japanese female patient with CPHD and FGFR1 haploinsufficiency. The patient was identified through copy-number analyses and direct sequencing of FGFR1 performed for 69 patients with CPHD. The patient presented with a combined deficiency of GH, LH and FSH, and multiple neurological abnormalities. In addition, normal TSH values along with a low free T4 level indicated the presence of central hypothyroidism. Molecular analyses identified a heterozygous ~ 8.5 Mb deletion involving 56 genes and pseudogenes. None of these genes except FGFR1 have been associated with brain development. No FGFR1 abnormalities were identified in the remaining 68 patients, although two patients carried nucleotide substitutions (p.V102I and p.S107L) that were assessed as benign polymorphism by in vitro functional assays. These results indicate a possible role of FGFR1 in anterior pituitary function and the rarity of FGFR1 abnormalities in patients with CPHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.