A clear demonstration of the role of melatonin and its receptors in specific retinal functions is lacking. The present study investigated the distribution of MT1 receptors within the retina, and the scotopic and photopic electroretinograms (ERG) and retinal morphology in wildtype (WT) and MT1 receptor-deficient mice. MT1 receptor transcripts were localized in photoreceptor cells and in some inner retinal neurons. A diurnal rhythm in the dark-adapted ERG responses was observed in WT mice, with higher a-and b-wave amplitudes at night, but this rhythm was absent in mice lacking MT1 receptors. Injection of melatonin during the day decreased the scotopic response threshold and the amplitude of the a-and b-waves in the WT mice, but not in the MT1 ؊/؊ mice. The effects of MT1 receptor deficiency on retinal morphology was investigated at three different ages (3, 12, and 18 months). No differences between MT1 ؊/؊ and WT mice were observed at 3 months of age, whereas at 12 months MT1 ؊/؊ mice have a significant reduction in the number of photoreceptor nuclei in the outer nuclear layer compared with WT controls. No differences were observed in the number of cells in inner nuclear layer or in ganglion cells at 12 months of age. At 18 months, the loss of photoreceptor nuclei in the outer nuclear layer was further accentuated and the number of ganglion cells was also significantly lower than that of controls. These data demonstrate the functional significance of melatonin and MT1 receptors in the mammalian retina and create the basis for future studies on the therapeutic use of melatonin in retinal degeneration.electroretinogram ͉ neuroprotection ͉ visual sensitivity ͉ glaucoma
Several studies have demonstrated that the mammalian retina contains an autonomous circadian clock. Dopaminergic and other inner retinal neurons express many of the clock genes, whereas some of these genes seem to be absent from the photoreceptors. This observation has led to the suggestion that in mammalian retina the circadian pacemaker driving retinal rhythms is located in the inner nuclear layer. However, other evidence points to the photoreceptor layer as the site of the mammalian retinal clock. The goal of the present study was to demonstrate the presence of a functional circadian clock in photoreceptors. First, using laser capture microdissection and reverse transcriptase-polymerase chain reaction, we investigated which of the clock genes are expressed in rat photoreceptors. We then prepared photoreceptor layer cultures from the retina to test whether these isolated cultures were viable and could drive circadian rhythms. Our data indicated that Per1, Per3, Cry1, Cry2, Clock, Bmal1, Rev-erb alpha, and Rora RNAs were present in the photoreceptors, whereas we were unable to amplify mRNA for Per2 and Npas2. Photoreceptor layers obtained from Period1-luciferase rats expressed a robust circadian rhythm in bioluminescence and melatonin synthesis. These results demonstrate that mammalian photoreceptors contain the circadian pacemaker driving rhythmic melatonin synthesis.
The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice. We also found that dietary fat absorption was extremely impaired in Clock mutant mice. Circadian expressions of cholecystokinin-A (CCK-A) receptor and lipase mRNAs were damped in the pancreas of Clock mutant mice. We therefore showed that a Clock mutation attenuates obesity induced by a high-fat diet in mice with an ICR background through impaired dietary fat absorption. Our results suggest that circadian clock molecules play an important role in lipid homeostasis in mammals.
In mammals a subpopulation of retinal ganglion cells are intrinsically photosensitive (ipRGCs), express the photopigment melanopsin, and play an important role in the regulation of the nonimage-forming visual system. We have recently reported that melanopsin mRNA and protein levels in the rat retina are under photic and circadian control. The aim of the present work was to investigate the mechanisms that control melanopsin expression in the rat retina. We discovered that dopamine (DA) is involved in the regulation of melanopsin mRNA, possibly via dopamine D2 receptors that are located on these ipRGCs. Interestingly, we also discovered that pituitary adenylate cyclase-activating peptide (PACAP) mRNA levels are affected by DA. Dopamine synthesis and release in the retina are regulated by the rod and the cone photoreceptors via retinal circuitry; our new data indicate that DA controls melanopsin expression, indicating that classical photoreceptors may modulate the transcription of this new photopigment. Our study also suggests that DA may have an important role in mediating the light signals that are used for circadian entrainment and for other responses that are mediated by the nonimage-forming visual system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.