Epilepsy is a chronic neurological disorder affecting mammals, including humans. Uncontrolled epilepsy is associated with poor quality of life, accidents, and sudden death. In particular, temporal lobe epilepsy (TLE) is the most common type of pharmacoresistant epilepsy, which easily gets out of control in human adults. The aim of this study was to profile urinary volatile organic compounds (VOCs) in a mouse model of TLE using solid-phase microextraction (SPME) gas chromatography mass spectrometry (GC-MS). Thirteen urinary VOCs exhibited differential abundance between epileptic and control mice, and the corresponding areas under the receiver operating characteristic (ROC) curve were greater than 0.8. Principal component analysis (PCA) based on these 13 VOCs separated epileptic from sham operated-mice, suggesting that all these 13 VOCs are epilepsy biomarkers. Promax rotation and dendrogram analysis concordantly separated the 13 VOCs into three groups. Stepwise linear discriminant analysis extracted methanethiol; disulfide, dimethyl; and 2-butanone as predictors. Based on known metabolic systems, the results suggest that TLE induced by amygdala stimulation could affect both endogenous metabolites and the gut flora. Future work will elucidate the physiological meaning of the VOCs as end-products of metabolic networks and assess the impact of the metabolic background involved in development of TLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.