Surface modification is an essential tool in tissue engineering using synthetic biomaterial scaffolds. The authors report in this study a simple approach to modify the surface hydrophobicity, roughness and chemistry of electrospun polycaprolactone (PCL) fibers using a combination of oxygen plasma treatment, sodium hydroxide treatment and arginine–glycine–aspartic acid (RGD) immobilization. The modified surfaces were characterized using scanning electron microscopy, atomic force microscopy, water contact angle measurement and X-ray photoelectron spectroscopy (XPS). Plasma treatment decreased the water contact angle. Sodium hydroxide treatment further improved the hydrophilicity and increased the surface roughness. XPS analysis confirmed the presence of amide bonds on RGD-treated fibers. The enhancement of proliferation of ligament fibroblasts within 1 week of culturing on both the plasma- and sodium hydroxide–treated fibers was most likely due to improved wettability by the oxygen plasma treatment. The alignment and penetration of cells on PCL fibers suggested that these materials could be potential scaffold materials for the regeneration of fibrous tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.