A two-state system driven by two inputs has been found to consistently produce a response mirroring a logic function of the two inputs, in an optimal window of moderate noise. This phenomenon is called logical stochastic resonance (LSR). We extend the conventional LSR paradigm to implement higher-level logic architecture or typical digital electronic structures via carefully crafted coupling schemes. Further, we examine the intriguing possibility of obtaining reliable logic outputs from a noise-free bistable system, subject only to periodic forcing, and show that this system also yields a phenomenon analogous to LSR, termed Logical Vibrational Resonance (LVR), in an appropriate window of frequency and amplitude of the periodic forcing. Lastly, this approach is extended to realize morphable logic gates through the Logical Coherence Resonance (LCR) in excitable systems under the influence of noise. The results are verified with suitable circuit experiments, demonstrating the robustness of the LSR, LVR and LCR phenomena.
This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.
The influence of noise on synchronization has potential impact on physical, chemical, biological, and engineered systems. Research on systems subject to common noise has demonstrated that noise can aid synchronization, as common noise imparts correlations on the sub-systems. In our work, we revisit this idea for a system of bistable dynamical systems, under repulsive coupling, driven by noises with varying degrees of cross correlation. This class of coupling has not been fully explored, and we show that it offers new counter-intuitive emergent behavior. Specifically, we demonstrate that the competitive interplay of noise and coupling gives rise to phenomena ranging from the usual synchronized state to the uncommon anti-synchronized state where the coupled bistable systems are pushed to different wells. Interestingly, this progression from anti-synchronization to synchronization goes through a domain where the system randomly hops between the synchronized and anti-synchronized states. The underlying basis for this striking behavior is that correlated noise preferentially enhances coherence, while the interactions provide an opposing drive to push the states apart. Our results also shed light on the robustness of synchronization obtained in the idealized scenario of perfectly correlated noise, as well as the influence of noise correlation on anti-synchronization. Last, the experimental implementation of our model using bistable electronic circuits, where we were able to sweep a large range of noise strengths and noise correlations in the laboratory realization of this noise-driven coupled system, firmly indicates the robustness and generality of our observations.
Traditional way when an UX/UI designer needs to design a website he needs to do the rough diagram of wireframe and then if the design proposal is been accepted by the client then the designers needs create the User Interface of the Website should be created but what if the client has been reject the designed proposal then the UX/UI designer need to do from scratch. Here I’m presenting you this proposal.
KEYWORDS- digital conversion, identification, recognizing, Template Generation, machine learning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.