Architectural description (AD) is the backbone that facilitates the implementation and validation of robotic systems. In general, current high-level ADs reflect great variation and lead to various difficulties, including mixing ADs with implementation issues. They lack the qualities of being systematic and coherent, as well as lacking technical-related forms (e.g., icons of faces, computer screens). Additionally, a variety of languages exist for eliciting requirements, such as object-oriented analysis methods susceptible to inconsistency (e.g., those using multiple diagrams in UML and SysML). In this paper, we orient our research toward a more generic conceptualization of ADs in robotics. We apply a new modeling methodology, namely the thinging machine (TM), to describe the architecture in robotic systems. The focus of such an application is on high-level specification, which is one important aspect for realizing the design and implementation in such systems. TM modeling can be utilized in documentation and communication and as the first step in the system's design phase. Accordingly, sample robot architectures are re-expressed in terms of TM, thus developing (1) a static model that captures the robot's atemporal aspects, (2) a dynamic model that identifies states, and (3) a behavioral model that specifies the chronology of events in the system. This result shows a viable approach in robot modeling that determines a robot system's behavior through its static description.
The use of Machine Learning in Artificial Intelligence is the inspiration that shaped technology as it is today. Machine Learning has the power to greatly simplify our lives. Improvement in speech recognition and language understanding help the community interact more naturally with technology. The popularity of machine learning opens up the opportunities for optimizing the design of computing platforms using welldefined hardware accelerators. In the upcoming few years, cameras will be utilised as sensors for several applications. For ease of use and privacy restrictions, the requested image processing should be limited to a local embedded computer platform and with a high accuracy. Furthermore, less energy should be consumed. Dedicated acceleration of Convolutional Neural Networks can achieve these targets with high flexibility to perform multiple vision tasks. However, due to the exponential growth in technology constraints (especially in terms of energy) which could lead to heterogeneous multicores, and increasing number of defects, the strategy of defect-tolerant accelerators for heterogeneous multi-cores may become a main micro-architecture research issue. The up to date accelerators used still face some performance issues such as memory limitations, bandwidth, speed etc. This literature summarizes (in terms of a survey) recent work of accelerators including their advantages and disadvantages to make it easier for developers with neural network interests to further improve what has already been established.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.