BACKGROUND: Contemporary nickel-titanium (NiTi) rotary endodontic instruments had a revolutionary impact on the success of root canal treatment. AIM: To evaluate the flexibility, microstructure and elemental analysis of four different recent NiTi rotary instruments, namely; Wave One Gold, TF adaptive, HyFlex EDM and Gr_Reciproc Blue compared to conventional Protaper Universal (F2). MATERIAL AND METHODS: The NiTi rotary files were subjected to cantilever bending test to evaluate their flexibility. The microstructural characteristics and elemental analysis were examined via scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDX). RESULTS: The TF adaptive, HyFlex EDM and Wave One Gold endodontic files showed significantly lower cantilever bending values (i.e., higher flexibility) than Protaper F2 and Gr_Reciproc Blue (p < 0.05). The SEM micrographs showed that the bulk of all examined files showed multiple striations due to the cutting process, on the other hand, their external surfaces were different: The Protaper Universal F2 showed multiple voids, while the TF Adaptive surface exhibited more uniform structure. The Hyflex EDM had a crater-like surface, whereas Wave one Gold showed machining grooves with minimum defects, while Reciproc Blue displayed machining grooves with random scratch lines. There was a significant difference in bulk and surface elemental analysis of the various examined files, yet composed mainly of the same elements. CONCLUSION: Chemical composition, heat treatment, manufacturing process and geometrical design of the NiTi rotary instrument have a great influence on their flexibility and microstructure.
Background: Insolubility is the main requirement for ideal root end filling material to provide perfect sealing ability. Moreover, alkalinity and bioactivity provide great chance for tissues healing and remineralization. So, the aim of this work was to evaluate the chemical composition, solubility, pH change, and calcium ion release of recently introduced commercial mineral trioxide aggregate (MTA) endodontic repair cement (Harvard, Universal HandMix MTA) compared with ProRoot MTA repair material. Methods: Solubility was evaluated after 7-and 14-day immersion time of specimens in phosphate buffer saline solution (PBS); the mean weight loss was evaluated and solubility was calculated as a percentage of the weight loss. For assessment of pH change and calcium ion release polyethylene tubes filled with the materials were soaked in distilled water for 7 and 14 days. Measurement of pH change was done by analytical pH meter. Concentrations of calcium ion release were measured using inductively coupled plasma optical emission spectroscopy. Data were statistically analyzed by independent sample t test and paired sample t test at 5% significance level. Results: Harvard MTA endodontic cement showed significant lower solubility and higher pH values compared with that of ProRoot MTA. ProRoot MTA exhibited significant higher calcium ion release value after 14 days (P value ≤ 0.05). Conclusion: Harvard, Universal HandMix MTA repair cement with its different chemical composition; exhibits a low solubility with enhanced alkaline pH value compared to ProRoot MTA repair material.
AIM: To compare and evaluate the influence of thermomechanical treatment of Protaper Gold file versus Protaper Universal file during testing of bending and torsion using finite-element analysis. METHODS: Two nickel-titanium NiTi rotary files (ProTaper Gold and ProTaper Universal) were used in this study. The files were imaged using stereomicroscope to produce 3D models. The behaviour of the instrument during bending and torsion was numerically analysed in CAD/CAM software package. RESULTS: Under bending, ProTaper, Gold showed higher flexibility and flexural resistance than ProTaper Universal. The highest stress was related at the cutting edge of both files. While during testing of torsion, the maximum amount of stresses was related to the base of the flutes in both files. ProTaper Gold showed higher torsional resistance than the ProTaper Universal file. CONCLUSION: Thermomechanical treatment improved the mechanical response (bending and torsional resistance) of NiTi files.
Introduction Geometrical designs of nickel-titanium (NiTi) rotary instruments have a considerable influence on their mechanical performance, and thereby have the tendency to fracture. Aim To evaluate the effect of cross-sectional geometry, pitch, taper, and off-center cross-section on the stress distribution in NiTi instruments under bending and torsion conditions using finite element analysis (FEA). Materials and methods Eleven theoretical three-dimensional finite element (FE) models of rotary instruments were constructed and divided according to the geometric design tested into; group 1 (cross-section geometry): four FE models with four different cross-section designs (triangle, convex triangular, parallelogram, and rectangle). Group 2 (pitch): three FE models with different pitches (5, 10, and 15 threads). Group 3 (taper): two FEA models with two different tapers (0.04 and 0.06). Group 4 (centering): two FEA models (off-centered and centered cross section). The behavior of the instrument under bending and torsional conditions was analyzed mathematically in SolidWorks software package. Results The pattern of stress distribution was varied by altering cross-sectional geometry, pitch, taper, and off-center cross section. Conclusion No single geometrical design could be beneficial for all stress conditions. To decrease the stress accumulation during bending of rotary files in curved root canals, the rotary NiTi instruments should be designed with rectangle cross-section configuration, low pitch, reduced taper, and with centered cross section. This design improved the flexibility of rotary NiTi instruments. However, to improve the torsional resistance during root canal preparation of narrow canals, the file should be designed with parallelogram cross-sectional configuration, low pitch, increased taper, and eccentric cross-section design.
Background: The objective of this study was to assess the bending and torsional properties of two nickel-titanium endodontic files with equivalent sizes and various designs and alloys using finite element analysis, ProTaper Next®X2 (PTN) size 25 with 0.06 taper and WaveOne Gold® (WOG) primary size 25 with 0.07 taper. Methodology: Two-dimensional models of the two files PTN and WOG were created using computer tomography scanning and stereomicroscope to produce a three-dimensional digital model. Instrument behavior under bending or torsional conditions was numerically analyzed in SolidWorks software package. Result: ProTaper Next® revealed higher flexibility than WaveOne Gold® when exposed to cantilever bending but showed higher stress accumulation than WOG. In terms of torsional resistance, PTN also revealed higher torsional resistance than WOG. Conclusion: The geometry of the instrument, thermomechanical treatment of the alloy, and its composition affect the mechanical behavior (bending and torsion) of nickel titanium rotary files. Hence, being aware of these behavioral differences, each clinician will be able to use the adequate file according to the clinical situation in addition to the manufacturer's instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.