Organic solid-state emissive materials have gained much attention in recent times due to their excellent optoelectronic properties leading to successful commercialization for organic electronics.
Metallo-supramolecular polymer (MSP)-based electrochromic devices (ECDs) have drawn much attention because of their variable colors and attractive electrochromic (EC) properties. However, fabrication of voltage-tunable multicolor ECDs using single MSP is yet hard to realize. We anticipated alternate introduction of two different redox-active metal ions in an MSP combined with the adjustment of counteranions could be a solution to fabricate multicolor ECDs. The heterometals will induce color variability upon voltage alteration, and counteranions will help to tune the solubility of MSP in different solvents. In an attempt to fulfill this target, we have synthesized four heterobimetallic supramolecular polymers (HBPs) having different counteranions (BF 4 − , Cl − , PF 6 − , and OAc − ), in which Fe(II) and Os(II) are alternately complexed by two terpyridine units. To apply as EC material, the HBPs should be soluble in methanol and insoluble in acetonitrile for the preparation of EC film as well as ECDs. However, among the HBPs, only HBP-OAc is found to meet this requirement. The EC behaviors of the spray-coating film of HBP-OAc on an indium tin oxide (ITO)-coated glass substrate are investigated in terms of maximum transmittance contrast, coloration voltage, response time, coloration efficiency, and operational stability, which exhibits reversible multicolor electrochromism (the initial purple color of the film is changed to violet followed by greenish-yellow) upon alteration of the voltage from 0.0 to 0.7 V [required to oxidize the Os(II) ion] and to 1.0 V [required to oxidize the Fe(II) ion]. The film is also integrated into a laminated ECD by using lithium-based gel electrolyte. Finally, as a proof-ofconcept, a prototype voltage-tunable multicolor EC display (6 cm × 2.5 cm) is fabricated by using a designed image containing a flower, leaves, and a flower pot, which exhibits six different types of multicolor image upon application of tunable voltages.
2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6-trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton-induced intramolecular charge transfer (ICT) as well as electron transfer from the electron-rich anthracene to the electron-deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates.
This work presents the preparation of a series of novel Os(II)-based metallo-supramolecular polymers (polyOss: linear polyOsL1 and hyperbranched polyOsL1 L2 ) that show a broad absorption spanning 312 to 677 nm and a low Os(II)/(III) redox potential of 0.94 V. The electrochromic properties of a polyOs film cast on an ITO substrate is investigated. The change in transmittance (ΔT) of polyOsL1 is 49.9%, and the switching times for coloration (t ) and bleaching (t ) are 0.70 and 0.82 s, respectively. The introduction of a 10% branching structure (polyOsL1 L2 ) further enhanced the electrochromic performance with ΔT = 59.4%, t = 0.41 s, and t = 0.54 s. The coloration efficiency (η) increased from 396.1 to 467.5 cm C upon branching. A solid-state electrochromic device with polyOsL1 is successfully fabricated to use the polymer for potential applications.
The coordination nanosheets (CONASHs) are emerging as a new class of functional two-dimensional materials, which are one of the most active research areas of chemistry and physics in this decade. Despite the success of various structural and functional CONASHs, the development of a new molecular structure to discover alluring functional CONASHs remains challenging. Herein, we report successful preparation of two novel CONASHs (NBP1 and NBP2) through coordination between one of the unexplored molecular frameworks of bis(2,2′-bipyridine)-based ligands (BP1 and BP2) and Fe 2+ ions. Using a liquid−liquid interface as a platform, large-scale thin films of multilayer CONASHs have been prepared without any support, which can be deposited onto any desired substrate. Detailed characterization of the CONASHs using various microscopic and spectroscopic techniques reveals homogeneous and flat morphology of nanometer thickness with the quantitative formation of tris(2,2′-bipyridine)−Fe 2+ complex motifs in the nanosheet frameworks. The color of the films has been tuned from blue to magenta by the suitable molecular design of the ligands. Owing to the insolubility of the CONASH films in any solvent and the presence of redox-active Fe 2+ , we explore the functionality of these nanostructured thin films deposited on indium tin oxide as electrochromic materials. The CONASHs exhibit color-to-colorless and color-to-color electrochromic transitions with attractive response times, switching stabilities, and coloration efficiencies. Finally, we demonstrate solid-state electrochromic devices of the CONASHs operated at a potential range of +2.5 to −2.5 V, which are electrochemically stable for several switching cycles, suggesting that these CONASHs are potential electrochromic materials for next-generation display applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.