Off-road and unstructured environments often contain complex patches of various types of terrain, rough elevation changes, deformable objects, etc. An autonomous ground vehicle traversing such environments experiences physical interactions that are extremely hard to model at scale and thus very hard to predict. Nevertheless, planning a safely traversable path through such an environment requires the ability to predict the outcomes of these interactions instead of avoiding them. One approach to doing this is to learn the interaction model offline based on collected data. Unfortunately, though, this requires large amounts of data and can often be brittle. Alternatively, models using physics-based simulators can generate large data and provide a reliable prediction. However, they are very slow to query online within the planning loop. This work proposes an algorithmic framework that utilizes the combination of a learned model and a physics-based simulation model for fast planning. Specifically, it uses the learned model as much as possible to accelerate planning while sparsely using the physics-based simulator to verify the feasibility of the planned path. We provide a theoretical analysis of the algorithm and its empirical evaluation showing a significant reduction in planning times.
Abstract-Reliable localization is one of the most important parts of an MAV system. Localization in an indoor GPS-denied environment is a relatively difficult problem. Current vision based algorithms track optical features to calculate odometry. We present a novel localization method which can be applied in an environment having orthogonal sets of equally spaced lines to form a grid. With the help of a monocular camera and using the properties of the grid-lines below, the MAV is localized inside each sub-cell of the grid and consequently over the entire grid for a relative localization over the grid.We demonstrate the effectiveness of our system onboard a customized MAV platform. The experimental results show that our method provides accurate 5-DoF localization over grid lines and it can be performed in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.