Background: Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt β−catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 (sFRP4) hampered stem cell properties in GSCs. Methods: To understand the molecular mechanism of sFRP4, we overexpressed sFRP4 (sFRP4 OE) in three human glioblastoma cell lines U87MG, U138MG, and U373MG. We also performed chromatin immunoprecipitation (ChIP) sequencing of sFRP4 OE and RNA sequencing of sFRP4 OE and sFRP4 knocked down U87 cells. Results: We observed nuclear localization of sFRP4, suggesting an unknown nuclear role. ChIP-sequencing of sFRP4 pulldown DNA revealed a homeobox Cphx1, related to the senescence regulator ETS proto-oncogene 2 (ETS2). Furthermore, miRNA885, a p53-mediated apoptosis inducer, was upregulated in sFRP4 OE cells. RNA sequencing analysis suggested that sFRP4-mediated apoptosis is via the Fas-p53 pathway by activating the Wnt calcium and reactive oxygen species pathways. Interestingly, sFRP4 OE cells had decreased stemness, but when knocked down in multipotent mesenchymal stem cells, pluripotentiality was induced and the Wnt β-catenin pathway was upregulated. Conclusions: This study unveils a novel nuclear role for sFRP4 to promote apoptosis by a possible activation of DNA damage machinery in glioblastoma.
Currently, all the existing treatments for Alzheimer’s disease (AD) fail to stall progression due to longer duration of time between onset of the symptoms and diagnosis of the disease, raising the necessity of effective diagnostics and novel treatment. Specific molecular regulation of the onset and progression of disease is not yet elucidated. This warranted investigation of the role of Wnt signaling regulators which are thought to be involved in neurogenesis. The AD model was established using amyloid beta (Aβ) in human mesenchymal stem cells derived from amniotic membranes which were differentiated into neuronal cell types. In vivo studies were carried out with Aβ or a Wnt antagonist, AD201, belonging to the sFRP family. We further created an AD201-knockdown in vitro model to determine the role of Wnt antagonism. BACE1 upregulation, ChAT and α7nAChR downregulation with synapse and functionality loss with increases in ROS confirmed the neurodegeneration. Reduced β-catenin and increased AD201 expression indicated Wnt/canonical pathway inhibition. Similar results were exhibited in the in vivo study along with AD-associated behavioural and molecular changes. AD201-knockdown rescued neurons from Aβ-induced toxicity. We demonstrated for the first time a role of AD201 in Alzheimer’s disease manifestation, which indicates a promising disease target and biomarker.
Handwritten Devanagari off-line characters recognition is a challenging task due to peculiarities involved in the writing styles of different person. We are collected features from 64 dimensional feature extraction techniques and shadow features for the Devanagari character recognition in this proposed scheme. These calculated features are used for further classification. Features which are used here for recognition means histograms of direction chain code of the contour points of the characters [4]. The features are classified using neural network and selected the best result by weighted majority voting technique.
General TermsThe general terms are Neural Network classifier is used with MLP classifier.
Keywords64 dimensional features, Shadow features, neural network and weighted majority voting technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.