The pharmacokinetics and bioavailability of pamidronate were assessed in patients with breast cancer, 6 subjects received the drug intravenously and 7 orally. The initial plasma half-life of pamidronate was short (42 +/- 27 min) and the apparent total plasma clearance was high (471 +/- 298 ml/min). The renal clearance (74 +/- 34 ml/min) was similar to the creatinine clearance (66 +/- 19 ml/min). Most of the renal elimination occurred during and immediately post a 4 h infusion of the drug (23.2 +/- 7.9% in 24 h). The non-renal clearance was ascribed to uptake by bone and deep tissue compartments. Little additional drug appeared in the urine after 24 h. The mean bioavailability was estimated using a parallel study design to be 0.3% for a 300 mg oral dose.
Carbapenem-resistant Enterobacteriaceae (CRE), especially carbapenem-resistant Klebsiella pneumoniae (CRKP), are among the largest pathogenic threats to humans. The available antibiotic treatment options for combating CRKP are limited. Colistin-resistant Enterobacteriaceae (CoRE) have also been reported worldwide, including in Thailand. Therefore, this study aimed 1) to determine minimum inhibitory concentrations (MICs) and synergistic activities of antibiotics of CRKP, and 2) to determine the probability target of attainment (PTA) and cumulative fraction of response (CFR) using pharmacokinetic/pharmacodynamic (PK/PD) data. Clinical CRKP isolates were obtained from Phramongkutklao Hospital (June to November 2020). Broth microdilution and checkerboard techniques were used to determine the mono- and synergistic activities of antibiotics. Carbapenemase and mcr-1 genes were also identified by polymerase chain reaction (PCR). The optimal antibiotic regimens were evaluated using Monte Carlo simulations. Forty-nine CRKP isolates were collected, 40 of which were CoRKP strains. The MIC50 and MIC90 of tigecycline, amikacin, and gentamicin were 1 and 2 µg/mL, 4 and 16 µg/mL, and 0.25 and 4 µg/mL, respectively. None of any isolates expressed the mcr-1 gene, whereas blaOXA-48 (53.1%) and blaOXA-48 plus blaNDM (42.9%) were detected. The synergy of tigecycline combined with amikacin or gentamicin was 8.2%. Additive activity was observed in 75.5% of isolates for tigecycline-amikacin and 69.4% for tigecycline-gentamicin, and no antagonism was observed. High-dose antibiotic regimens achieved the PTA target. The general recommended dose of combination regimens began with 200 mg tigecycline and 25 mg/kg amikacin, or 7 mg/kg gentamicin, followed by 100 mg tigecycline every 12 h and 15 mg/kg amikacin or 5 mg/kg gentamicin every 24 h. In conclusion, tigecycline plus aminoglycosides might be a potential regimen against CRKP and CoRKP. The appropriate combination regimen based on MIC-based dose adjustment can improve optimal antibiotic dosing. Further research via clinical studies will be necessary to confirm these results.
Purpose: MBL and OXA-48 genes in carbapenem-resistant Enterobacterales (CRE) have emerged as a major public health problem worldwide, including Thailand. Due to the lack of susceptibility data and dosing regimens of ceftazidime-avibactam (CZA) against CRE in Thailand, especially in colistin-resistant era, we aimed to demonstrate in vitro susceptibility data of CZA and optimal dose based on Monte Carlo simulation of CZA to expand the treatment options. Patients and Methods: We collected 49 carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolates from unique patients at Phramongkutklao Hospital (June-October 2020). CZA disk diffusion and E-test testing were performed to obtain minimum inhibitory concentration (MIC). Each drug regimen was simulated using the Monte Carlo technique to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR). Results: The most common genotypes of CRKP were bla OXA-48 (53.1%) and bla OXA-48 +bla NDM (42.8%). CZA showed 47.7% and 90.5% susceptible rate against all genotypes of carbapenemases and OXA-48 type CRKP isolates. The MIC 50 and MIC 90 of CZA against CRKP were 2 and >256 µg/mL. The categorical agreement (CA) between disk diffusion and E-test testing of CZA against CRKP was 95.4%. The CZA dosing regimens of 2.5 g infused 2-3 h every 8 h achieved ≥90% of the target of free ceftazidime plasma concentration over MIC (%fTime >MIC) ≥50% and 100% against isolates MICs of ≤8 and ≤8 µg/mL, respectively. The avibactam regimens also provided 100%fTime at 0.5 µg/mL. Based on CFR ≥90%, no CZA regimens were effective against all of the studied CRKP isolates except CRKP carrying OXA-48. Conclusion: CZA exhibited a fairly susceptible rate among the OXA-48-positive isolates in Thailand. The current suggested dose of CZA with prolonged infusion appears appropriate to achieve the pharmacokinetic/pharmacodynamic targets of ceftazidime and avibactam against CRKP carrying bla OXA-48 .
Background: Currently, the achievement of the target area under the curve (AUC)/ minimum inhibitory concentration ratio during the first 24 -48 h of treatment is associated with reduced 30-day mortality and greater microbiological eradication in patients with methicillin-resistant Staphylococcus aureus bacteremia. This study aimed to determine the AUC and pharmacokinetic parameters on the first day of vancomycin administration based on the Bayesian theorem to optimize the dosing regimen in critically ill patients. Materials and Methods: This retrospective study included participants meeting the following criteria: 1) ≥18 years old; 2) receipt of at least one dose of vancomycin; 3) measurement of 2 vancomycin serum concentrations during the first 24 h of treatment; and 4) an intensive care unit admission, mechanical ventilator use, or an Acute Physiology and Chronic Health Evaluation II score >15 points. The AUC on day 1 of treatment and the estimated vancomycin pharmacokinetic parameters were measured using PrecisePK software based on the Bayesian theorem. Results: We obtained 132 vancomycin concentrations from 66 patients. The vancomycin pharmacokinetic parameters were as follows: AUC 0-24 , 571.09 (± standard deviation [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.