In this paper, we present a new extragradient algorithm for approximating a solution of the split equilibrium problems and split fixed point problems. The strong convergence theorems are proved in the framework of Hilbert spaces under some mild conditions. We apply the obtained main result for the problem of finding a solution of split variational inequality problems and split fixed point problems and a numerical example and computational results are also provided.
This paper presents two shrinking extragradient algorithms that can both find the solution sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications of the scalar sequences, these two new algorithms show strong convergence. Some numerical experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms are compared with a standard, well-known algorithm.
This paper presents two inertial extragradient algorithms for finding a solution of split pseudomonotone equilibrium problems in the setting of real Hilbert spaces. The weak and strong convergence theorems of the introduced algorithms are presented under some constraint qualifications of the scalar sequences. The discussions on the numerical experiments are also provided to demonstrate the effectiveness of the proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.