This study identifies an unusual sulfur-based chemical as a novel and specific inhibitor of the tyrosine phosphatase STEP and shows that it can improve the cognitive function of a mouse model of Alzheimer's disease.
The human cerebral cortex is distinguished by its large size and abundant
gyrification, or folding, yet the evolutionary mechanisms driving cortical size
and structure are unknown. While genes essential for cortical developmental
expansion have been identified from the genetics of human primary microcephaly
(“small head”, associated with reduced brain size and
intellectual disability)1,
studies of these genes in mice, whose smooth cortex is one thousand times
smaller than that of humans, have provided limited insight. Mutations of
abnormal spindle-like microcephaly-associated
(ASPM), the most common recessive microcephaly gene, reduce
cortical volume by ≥50% in humans2–4, but have little effect in mice5–9, likely reflecting evolutionarily divergent functions of
ASPM10,11. We used genome editing to
create a germline knockout (KO) of Aspm in the ferret
(Mustela putorius furo), a species with a larger, gyrified
cortex and greater neural progenitor cell (NPC) diversity12–14 than mice, and closer Aspm protein sequence homology to
human. Aspm KO ferrets exhibit severe microcephaly
(25–40% decreases in brain weight), reflecting reduced cortical
surface area without significant change in cortical thickness, as in human
patients3,4, suggesting loss of “cortical
units”. The mutant ferret fetal cortex displays a massive premature
displacement of ventricular radial glial cells (VRG) to the outer subventricular
zone (OSVZ), where many resemble outer radial glia (ORG), an NPC subtype
essentially absent in mice and implicated in cerebral cortical expansion in
primates12–16. These data suggest an
evolutionary mechanism whereby Aspm regulates cortical expansion by controlling
the affinity of VRG for the ventricular surface, thus modulating the ratio of
VRG, the most undifferentiated cell type, to ORG, a more differentiated
progenitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.