Background. To study the effects of an aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae) diet on diabetic polyneuropathy (DPN) in streptozotocin- (STZ-) induced diabetic rats. Methods. The effects of a date fruit extract (DFE) diet on diabetic neuropathy in STZ-induced diabetic rats were evaluated and compared with a nondiabetic control group, diabetic control group (sham), and vehicle group with respect to the following parameters: open field behavioral test, motor nerve conduction velocity (MNCV), and morphological observations. Results. In the model of STZ-induced of diabetic neuropathy, chronic treatment for 6 weeks with DFE counteracted the impairment of the explorative activity of the rats in an open field behavioral test and of the conduction velocity of the sciatic nerve (MNCV). In addition, pretreatment with DFE significantly reversed each nerve diameter reduction in diabetic rats. Conclusion. DFE treatment shows efficacy for preventing diabetic deterioration and for improving pathological parameters of diabetic neuropathy in rats, as compared with control groups.
A series of N-benzyl-1-(5-aryl-1,3,4-oxadiazol-2-yl)-1-(1H-pyrrol-2-yl)methanamines were synthesized via one-pot reaction of appropriate benzylamine, pyrrole-2-carbaldehyde, (N-isocyanimino)triphenylphosphorane, and a carboxylic acid. The anti-tumor potential of title compounds was tested against several cancer cell lines by using MTT assay. Some tested compounds including 5e, 5p and 5q exhibited comparable or better cytotoxic activity against A549, HT29 or HT1080 cells in comparison to the reference drug doxorubicin. Also, the cytotoxic activity of compounds 5d and 5n against MCF-7 was better than that of doxorubicin. Compound 5n with IC50 value of 4.3 μM was 4-fold more potent than doxorubicin. The structure-activity relationship study revealed that the introduction of halogen atoms on both 5-phenyl ring and N-benzyl part improved the cytotoxic activity against all tested cell lines.
The present study was designed to isolate bacterial strain capable of tellurium nanorods' (Te NRs) production followed by purification and evaluation of the cytotoxic effect of Te NRs. Among 25 environmental samples collected for screening of Te NR-producer bacterial strains one bacterial colony (isolated from hot spring and identified as Pseudomonas pseudoalcaligenes strain Te) was selected and applied for biosynthesis of Te NRs. Thereafter, an organic-aqueous partitioning system was applied for the purification of the biogenic Te NRs and the purified Te NRs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) techniques. The cytotoxic effect of biologically synthesized Te NRs and potassium tellurite on four cell lines of MCF-7, HT1080, HepG2 and A549 was then determined using the MTT assay method. The obtained results revealed lower toxicity for the rod-shaped biogenic tellurium nanostructures (~22nm diameter by 185nm length) compared to K2TeO3.
A novel series of coumarin-lipoic acid conjugates were synthesized via cycloaddition click reaction to find out new multi-target-directed ligands (MTDLs) for treatment of Alzheimer's disease (AD). All of synthesized compounds were screened for neuroprotective and anti-cholinesterase activities. Based on primary screening, two compounds (5 and 11) were subjected to further biological evaluations. In particular, compound 11 which was the most potent AChE inhibitor showed good inhibitory effect on Aβ-aggregation and intracellular ROS (reactive oxygen species) formation, as well as the ability of selective bio-metal chelation and neuroprotection against HO- and Aβ-induced cytotoxicity. In the light of these results, the applied hybridization approach introduced new promising lead compound with desired multifunctional properties, being useful in the treatment of Alzheimer's disease.
Problem statement: Diabetes mellitus occurs mainly with chronic polyneuropathy, and oxidative stress plays an important role in emergence of most neurologic and behavioral changes in diabetic patients. Many studies have focused on the beneficial effects of various antioxidants such as melatonin on diabetic neuropathy. The aim of this study is to evaluate the effect of melatonin in prevention of neuropathy in Streptozotocin-induced diabetic rats. After prescribing Streptozotocin (STZ), treatment rats received melatonin (10 mg kg day −1 ) or DMSO for a period of 6 weeks. Approach: At the end of the sixth week, non diabetic control group, diabetic control group (sham) and treated rats were examined by thermal pain response tests (hot plate and tail flick). The horizontal and vertical activities of rats were measured in an open field test. After that, Motor Nerve Conduction Velocity (MNCV) of sciatic-tibial nerve recorded. Also, to study morphological alterations resulting from diabetic neuropathy of sciatic nerve, Myelinated Fiber Diameter (MFD), Axon Diameter (AD) and Myelin Sheath Diameter (MSD) were evaluated by light microscope. Results: According to hot plate results, response time to thermal pain at the end of sixth week in sham group showed a significant decrease in comparison with the control group (p<0.01). In hot plate test, although melatonin approximated to the response time to control group, the significant difference was not observed among melatonin receivers and other groups. In the open field test, Total Distance Moved (TDM) and mobility duration showed significant decrease in sham and DMSO groups in comparison to the control and melatonin groups. Diabetic rats treated with melatonin showed significant increase in MNCV compared to sham and DMSO groups (p<0.05). In morphological study, pretreatment with Melatonin significantly reversed sciatic nerve diameters (MFD, AD, and MSD) reduction in diabetic rats. Electron microscopy showed myelin splitting and myelin sheath infolding in diabetic control group compare to non diabetic group. Conclusion: This study showed that melatonin can decrease the destructive progress of diabetes and causes neuroprotection against damages resulting from STZinduced hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.