Objectives:The proposed research work detects road cracks in a given set of images. In addition, it identifies the longitudinal type of crack in given crack image. Methods: The study mainly focuses on implementing a road crack detection technique using Convolutional Neural Networks. Findings: The proposed model is able to distinguish between crack and non-crack images and also able to classify the longitudinal crack from other given crack images. Novelty: Proposed road crack detection technique provides high accuracy compared to earlier standard techniques.
This paper presents a multiband compact microstrip MIMO antenna for Unmanned Air Vehicle, GPS and WLAN applications. It consists of two symmetric triangular spiral shape patch and defected ground structure (DGS). The antenna is designed using low cost FR4 Substrate and analysed by using commercially available electromagnetic simulation software CST. The simulation results shows the designed antenna has resonance frequencies at 1.62 GHz and bandwidth from1.6027 GHz to 1.6391 GHz, at 2.42 GHz from 2.3609 GHz to 2.4667 GHz and 3.79 GHz from 3.6418 GHz to 3.7909 GHz frequency which covers GPS, WLAN and UAV(LTE band) applications respectively. Detailed physical analysis of proposed antenna is presented and the characteristics of antenna are verified by the return loss, insertion loss, gain and directivity. It is found that it has good performance for above applications. The overall size of the antenna is 28 x 20.5 mm2 which is less than the conventional antenna by 84% at lowest resonating frequency of 1.62 GHz.
This paper presents a multiband compact microstrip MIMO antenna for Unmanned Air Vehicle, GPS and WLAN applications. It consists of two symmetric triangular spiral shape patch and defected ground structure (DGS). The antenna is designed using low cost FR4 Substrate and analysed by using commercially available electromagnetic simulation software CST. The simulation results shows the designed antenna has resonance frequencies at 1.62 GHz and bandwidth from1.6027 GHz to 1.6391 GHz, at 2.42 GHz from 2.3609 GHz to 2.4667 GHz and 3.79 GHz from 3.6418 GHz to 3.7909 GHz frequency which covers GPS, WLAN and UAV(LTE band) applications respectively. Detailed physical analysis of proposed antenna is presented and the characteristics of antenna are verified by the return loss, insertion loss, gain and directivity. It is found that it has good performance for above applications. The overall size of the antenna is 28 x 20.5 mm2 which is less than the conventional antenna by 84% at lowest resonating frequency of 1.62 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.