Motivation
Identifying meaningful cancer driver genes in a cohort of tumors is a challenging task in cancer genomics. Although existing studies have identified known cancer drivers, most of them focus on detecting coding drivers with mutations. It is acknowledged that non-coding drivers can regulate driver mutations to promote cancer growth. In this work, we propose a novel node importance based network analysis (NIBNA) framework to detect coding and non-coding cancer drivers. We hypothesize that cancer drivers are crucial to the formation of community structures in cancer network, and removing them from the network greatly perturbs the network structure thereby critically affecting the functioning of the network. NIBNA detects cancer drivers using a three-step process; first, a condition-specific network is built by incorporating gene expression data and gene networks, second, the community structures in the network are estimated and third, a centrality-based metric is applied to compute node importance.
Results
We apply NIBNA to the BRCA dataset and it outperforms existing state-of-art methods in detecting coding cancer drivers. NIBNA also predicts 265 miRNA drivers and majority of these drivers have been validated in literature. Further we apply NIBNA to detect cancer subtype-specific drivers and several predicted drivers have been validated to be associated with cancer subtypes. Lastly, we evaluate NIBNA’s performance in detecting epithelial-mesenchymal transition (EMT) drivers, and we confirmed 8 coding and 13 miRNA drivers in the list of known genes.
Availability
The source code can be accessed at: https://github.com/mandarsc/NIBNA.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.