In , zygotic genome activation occurs in pre-blastoderm embryos during rapid mitotic divisions. How the transcription machinery is coordinated to achieve this goal in a very brief time span is still poorly understood. Transcription factor II H (TFIIH) is fundamental for transcription initiation by RNA polymerase II (RNAPII). Herein, we show the dynamics of TFIIH at the onset of transcription in embryos. TFIIH shows an oscillatory behaviour between the nucleus and cytoplasm. TFIIH foci are observed from interphase to metaphase, and colocalize with those for RNAPII phosphorylated at serine 5 (RNAPIIS5P) at prophase, suggesting that transcription occurs during the first mitotic phases. Furthermore, embryos with defects in subunits of either the CAK or the core subcomplexes of TFIIH show catastrophic mitosis. Although, transcriptome analyses show altered expression of several maternal genes that participate in mitosis, the global level of RNAPIIS5P in TFIIH mutant embryos is similar to that in the wild type, therefore, a direct role for TFIIH in mitosis cannot be ruled out. These results provide important insights regarding the role of a basal transcription machinery component when the zygotic genome is activated.
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.