A rapid prototyping model of Mason II fracture was used to investigate baseline recommendations for surgical intervention founded on kinematic forearm rotational blockage. Exact replicas of the radial heads in nine cadaveric specimens were produced and specimens were tested in a physiologic elbow simulator. After testing supination/pronation, the rotations were repeated with native replicas and with replicas modeling 3 mm depressed Mason II fractures with and without a gap of 1 mm between the body and fragment. The fragments were located circumferentially around the radial head at 10, 2 and 6 o'clock positions. There was no statistical difference between the range of motion of the native case and the native replica without fracture. After inclusion of the fracture, seven of the nine specimens showed rotational blockages. A two-way ANOVA found no statistical difference due to type of Mason II fracture (p > 0.87) or fracture location (p > 0.27). A x-square analysis showed that presence of a kinematic deficit with a fractured radial head was significant (p < 0.03). The results support continued surgical intervention for a 3 mm depressed fracture and also establish the use of the rapid prototype as a model for kinematic investigation of fractures in a cadaveric model when ligamentous attachments are preserved. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.