Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally (i.p.) or subcutaneously (s.c.) with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the i.p. group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histological examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared to the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving s.c. injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the TCF/LEF reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Co-transfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by co-transfection with SFRP2, or dominant-negative TCF4. Overexpression of WNT7A stimulated MMP7 promoter, and mutation of TCF binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that re-expression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway.
CDH1 is a cell-cell adhesion molecule expressed in the epithelium to coordinate key morphogenetic processes, establish cell polarity, and regulate epithelial differentiation and proliferation. To determine the role of CDH1 in the mouse uterus, Cdh1 was conditionally ablated by crossing Pgr-Cre and Cdh1-flox mice, and the phenotype was characterized. We found that loss of Cdh1 results in a disorganized cellular structure of the epithelium and ablation of endometrial glands in the neonatal uterus. Cdh1(d/d) mice lost adherens junctions (CTNNB1 and CTNNA1) and tight junctions (claudin, occludin, and ZO-1 proteins) in the neonatal uterus, leading to loss of epithelial cell-cell interaction. Ablation of Cdh1 induced abnormal epithelial proliferation and massive apoptosis, and disrupted Wnt and Hox gene expression in the neonatal uterus. Although the uteri of Cdh1(d/d) mice did not show any myometrial defects, ablation of Cdh1 inhibited expression of epithelial (cytokeratin 8) and stromal (CD10) markers. Cdh1(d/d) mice were infertile because of defects during implantation and decidualization. Furthermore, we showed in the model of conditional ablation of both Cdh1 and Trp53 in the uterus that interrupting cell cycle regulation through the loss of Cdh1 leads to abnormal uterine development. The uteri of Cdh1(d/d) Trp53(d/d) mice exhibited histological features of endometrial carcinomas with myometrial invasion. Collectively, these findings suggest that CDH1 has an important role in structural and functional development of the uterus as well as adult uterine function. CDH1 has a capacity to control cell fate by altering directional cell proliferation and apoptosis.
We previously characterized the link between WNT7A and the progression of ovarian cancer. Other groups have identified FGF1 as a relevant risk factor in ovarian cancer. Here, we show a linkage between these two signaling pathways that may be exploited to improve treatment and prognosis of patients with ovarian cancer. High expression of WNT7A and FGF1 are correlated in ovarian carcinomas and poor overall patient survival. A chromatin immunoprecipitation assay demonstrated that WNT7A/β-catenin signaling directly regulates FGF1 expression via TCF binding elements in the FGF1-1C promoter locus. In vitro gene manipulation studies revealed that FGF1 is sufficient to drive the tumor promoting effects of WNT7A. In vivo xenograft studies confirmed that the stable overexpression of WNT7A or FGF1 induced a significant increase in tumor incidence, while FGF1 knockdown in WNT7A overexpressing cells caused a significant reduction in tumor size. Niclosamide most efficiently abrogated WNT7A/β-catenin signaling in our model, inhibited β-catenin transcriptional activity and cell viability, and increased cell death. Furthermore, niclosamide decreased cell migration following an increase in E-cadherin subsequent to decreased levels of SLUG. The effects of niclosamide on cell functions were more potent in WNT7A overexpressing cells. Oral niclosamide inhibited tumor growth and progression in an intraperitoneal xenograft mouse model representative of human ovarian cancer. Collectively, these results indicate that FGF1 is a direct downstream target of WNT7A/β-catenin signaling and this pathway has potential as a therapeutic target in ovarian cancer. Moreover, niclosamide is a promising inhibitor of this pathway and may have clinical relevance.
WNT signaling is well known to play an important role in the regulation of development, cell proliferation and cell differentiation in a wide variety of normal and cancerous tissues. Despite the wealth of knowledge concerning when and where various WNT genes are expressed and downstream events under their control, there is surprisingly little published evidence of how they are regulated. We have recently reported that aberrant WNT7A is observed in serous ovarian carcinomas, and WNT7A is the sole ligand accelerating ovarian tumor progression through CTNNB1 (β-catenin)/TCF signaling in the absence of CTNNB1 mutations. In the present study, we report that WNT7A is a direct target of miR-15b in ovarian cancer. We showed that a luciferase reporter containing the putative binding site of miR-15b in the WNT7A 3’-UTR was significantly repressed by miR-15b. Mutation of the putative binding site of miR-15b in the WNT7A 3’-UTR restored luciferase activity. Furthermore, miR-15b was able to repress increased levels of TOPFLASH activity by WNT7A, but not those induced by S33Y. Additionally, miR-15b dose-dependently decreased WNT7A expression. When we evaluated the prognostic impact of WNT7A and miR-15b expression using TCGA datasets, a significant inverse correlation in which high-expression of WNT7A and low-expression of miR-15b was associated with reduced survival rates of ovarian cancer patients. Treatment with decitabine dose-dependently increased miR-15b expression, and silencing of DNMT1 significantly increased miR-15b expression. These results suggest that WNT7A is post-transcriptionally regulated by miR-15b, which could be down-regulated by promoter hypermethylation, potentially via DNMT1, in ovarian cancer.
Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and 111In-single photon emission computed tomography (SPECT). Tumor uptake of the 111In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.