In the present work the optimized molecular geometry and harmonic vibrational frequencies of chalcone derivative were calculated by DFT/B3LYP method with 6–31G (d,p) basis set. The vibrational assignments were performed on the basis of the potential energy dis-tribution (PED) of the vibrational modes. Natural bond orbital (NBO) analysis has been performed on title compound using B3LYP/6–31G (d,p) and HSEh1PBE /6–31G (d,p) levels in order to elucidate intermolecular hydrogen bonding, intermolecular charge transfer (ICT) and delocalization of electron density. Mulliken atomic charges, natural population analysis (NPA) and atomic polar tensors (APT) were performed. The nonlinear optical properties of the title compound are also calculated and discussed. Molecular electrostatic poten-tial and HOMO-LUMO energy levels are also computed. Ultraviolet–visible spectrum of the title compound has been calculated using TD–DFT method. The molecular orbital contributions were studied by density of states (DOSs). Global reactivity descriptors have been calculated using the HOMO and LUMO to predict compound reactivity.
The electronic and structural properties of thiazolic ring derivatives were studied using density functional theory (DFT) and X-ray diffraction in terms of their application as organic semiconductor materials in photovoltaic devices. The B3LYP hybrid functional in combination with Pople type 6-31G(d) basis set with a polarization function was used in order to determine the optimized geometries and the electronic properties of the ground state, while transition energies and excited state properties were obtained from DFT with B3LYP/6-31G(d) calculation. The investigation of thiazolic derivatives formed by the arrangement of several monomeric units revealed that three-dimensional (3D) conjugated architectures present the best geometric and electronic characteristics for use as an organic semiconductor material. The highest occupied molecular orbital (HOMO) . lowest unoccupied molecular orbital (LUMO) energy gap was decreased in 3D structures that extend the absorption spectrum toward longer wavelengths, revealing a feasible intramolecular charge transfer process in these systems. All calculations in this work were performed using the Gaussian 03 W software package.
We report here the synthesis of Z-3-(2-Ethoxyphenyl)-2-(2-Ethoxyphenyl)-1,3-Thiazolidin-4-one compound. The crystal structure has been determined by X-ray diffraction. The compound crystallizes in the monoclinic system with space group P21/n and cell parameters: a = 9.4094(10), b = 9.3066(10), c = 20.960(2) Å, β=99.0375(10)0, V = 1812.7(3)Å3 and Z = 4. The structure has been refined to a final R = 0.05 for 2083 observed reflections. The refined structure was found to be significantly non planar. The molecule exhibits intermolecular hydrogen bond of type C–H...O, C–H...N and C–H...S. Ab initio calculations were also performed at Hartree–Fock and density functional theory levels. The full HF and DFT geometry optimization was carried out using 6-31G(d,p) basis set. The observed molecular structure is compared with that calculated by both HF and density functional theory methods. The optimized geometry of the title compound was found to be consistent structure determined by X-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.