Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing.
Purpose: Twenty-one patients with cancer were treated with a single round of oncolytic adenovirus ICOVIR-7. Experimental Design: ICOVIR-7 features an RGD-4C modification of the fiber HI-loop of serotype 5 adenovirus for enhanced entry into tumor cells. Tumor selectivity is mediated by an insulator, a modified E2F promoter, and a Rb-binding site deletion of E1A, whereas replication is optimized with E2F binding hairpins and a Kozak sequence. ICOVIR-7 doses ranged from 2 × 1010 to 1 × 1012 viral particles. All patients had advanced and metastatic solid tumors refractory to standard therapies. Results: ICOVIR-7 treatment was well tolerated with mild to moderate fever, fatigue, elevated liver transaminases, chills, and hyponatremia. One patient had grade 3 anemia but no other serious side effects were seen. At baseline, 9 of 21 of patients had neutralizing antibody titers against the ICOVIR-7 capsid. Treatment resulted in neutralizing antibody titer induction within 4 weeks in 16 of 18 patients. No elevations of serum proinflammatory cytokine levels were detected. Viral genomes were detected in the circulation in 18 of 21 of patients after injection and 7 of 15 of the samples were positive 2 to 4 weeks later suggesting viral replication. Conclusions: Overall, objective evidence of antitumor activity was seen in 9 of 17 evaluable patients. In radiological analyses, 5 of 12 evaluable patients had stabilization or reduction in tumor size. These consisted of one partial response, two minor responses and two cases of stable disease, all occurring in patients who had progressive disease before treatment. In summary, ICOVIR-7 treatment is apparently safe, resulting in anticancer activity, and is therefore promising for further clinical testing. Clin Cancer Res; 16(11); 3035–43. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.