The problem of the vulnerability of structures facing explosions came to the front line of the scientific scene in the last decades. Uncertainty of the environmental conditions and material properties have to be taken into account. The corresponding numerical models are very complex and depend on numerous parameters. Consequently, such models are cursed with issues which limit their use for real applications. Most of the existing approaches are based on a deterministic point of view, and are not able to represent the extreme sensitivity of a model towards uncertain parameters. That is why the uncertainty analysis is needed. The proposed research is devoted to the analysis of a structural behavior under an uncertain impact loading. Elasto-plastic Bernoulli beam model is used as structural model for the case simplicity, while the different formulation for impact itself are studied to simulate the wide range of possible types of impact. Model sensitivity is studied first. The influence of input parameters on structural behavior, that are the impact force, duration and position, as well as beam material are then considered. The obtained insights can provide the guidelines for modeling the structure under the explosive loading taking into account the uncertainties.
Ti‐6Al‐4V plates were machined simultaneously to achieve the reduced section of specimens with a wire‐cut electrical discharge machine (EDM). Geometric shape errors due to the cutting path deviation were discovered on many specimens after the final manufacture. High‐cycle fatigue tests were carried out on these symmetrical and asymmetrical shaped specimens. Probabilistic treatment was used to examine the occurrence probability of one or two cracks, and the fatigue failure mechanisms were investigated using scanning electron microscope (SEM). The objective of this work was to highlight the impact of the geometric size deviation on fatigue life and crack growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.