Semiconductor device optimization using computer-based prototyping techniques like simulation or machine learning digital twins can be time and resource efficient compared to the conventional strategy of iterating over device design variations by fabricating the actual device. However, simulation models require perfect calibration of material parameters for the model to represent a particular semiconductor device. This cali- bration process itself can require characterization information of the device and its precursors and extensive expert knowledge of non char- acterizable parameters and their tuning. We propose a hybrid method to calibrate multiple simulation models for a device using minimal characterization data and machine learning-based prediction models. A photovoltaic device is chosen as the example for this technique where optical and electrical simulation models of an industrially manufactured silicon solar cell are calibrated and the simulated device performance is compared with the measurement data from the physical device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.