We describe an automatic verification method to check whether transactional memories ensure strict serializability a key property assumed of the transactional interface. Our main contribution is a technique for effectively verifying parameterized systems. The technique merges ideas from parameterized hardware and protocol verification--verification by invisible invariants and symmetry reduction--with ideas from software verification--template-based invariant generation and satisfiability checking for quantified formulæ (modulo theories). The combination enables us to precisely model and analyze unbounded systems while taming state explosion. Our technique enables automated proofs that two-phase locking (TPL), dynamic software transactional memory (DSTM), and transactional locking II (TL2) systems ensure strict serializability. The verification is challenging since the systems are unbounded in several dimensions: the number and length of concurrently executing transactions, and the size of the shared memory they access, have no finite limit. In contrast, state-of-the-art software model checking tools such as BLAST and TVLA are unable to validate either system, due to inherent expressiveness limitations or state explosion.
We describe a system that uses automated planning to synthesize correct and efficient parallel graph programs from high-level algorithmic specifications. Automated planning allows us to use constraints to declaratively encode program transformations such as scheduling, implementation selection, and insertion of synchronization. Each plan emitted by the planner satisfies all constraints simultaneously, and corresponds to a composition of these transformations. In this way, we obtain an integrated compilation approach for a very challenging problem domain. We have used this system to synthesize parallel programs for four graph problems: triangle counting, maximal independent set computation, preflow-push maxflow, and connected components. Experiments on a variety of inputs show that the synthesized implementations perform competitively with hand-written, highly-tuned code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.