Nitric oxide synthases (NOS) are homodimeric enzymes that NADPH-dependently convert L-arginine to nitric oxide and L-citrulline. Interestingly, all NOS also require (6R)-5,6,7,8-tetrahydro-L-biopterin (H 4 Bip) for maximal activity although the mechanism is not fully understood. Basal NOS activity, i.e. that in the absence of exogenous H 4 Bip, has been attributed to enzyme-associated H 4 Bip. To elucidate further H 4 Bip function in purified NOS, we developed two types of pterin-based NOS inhibitors, termed anti-pterins. In contrast to type II anti-pterins, type I anti-pterins specifically displaced enzyme-associated H 4 Bip and inhibited H 4 Bip-stimulated NOS activity in a fully competitive manner but, surprisingly, had no effect on basal NOS activity. Moreover, for a number of different NOS preparations basal activity (percent of V max ) was frequently higher than the percentage of pterin saturation and was not affected by preincubation of enzyme with H 4 Bip. Thus, basal NOS activity appeared to be independent of enzyme-associated H 4 Bip. The lack of intrinsic 4a-pterincarbinolamine dehydratase activity argued against classical H 4 Bip redox cycling in NOS. Rather, H 4 Bip was required for both maximal activity and stability of NOS by binding to the oxygenase/dimerization domain and preventing monomerization and inactivation during L-arginine turnover. Since anti-pterins were also effective in intact cells, they may become useful in modulating states of pathologically high nitric oxide formation.
We examined here the role of second messenger-dependent kinases and beta-arrestins in short-term regulation of the PTH receptor (PTHR) signaling. The inhibition of protein kinase C (PKC) in COS-7 cells transiently expressing PTHR, led to an approximately 2-fold increase in PTH-stimulated inositol phosphate (IP) and cAMP production. The inhibition of protein kinase A increased cAMP production 1.5-fold without affecting IP signaling. The effects of PKC inhibition on PTHR-mediated G(q) signaling were strongly decreased for a carboxy-terminally truncated PTHR (T480) that is phosphorylation deficient. PKC inhibition was associated with a decrease in agonist-stimulated PTHR phosphorylation and internalization without blocking PTH-dependent mobilization of beta-arrestin2 to the plasma membrane. Overexpression of beta-arrestins strongly decreased the PTHR-mediated IP signal, whereas cAMP production was impaired to a much lower extent. The regulation of PTH-stimulated signals by beta-arrestins was impaired for the truncated T480 receptor. Our data reveal mechanisms at, and distal to, the receptor regulating PTHR-mediated signaling pathways by second messenger-dependent kinases. We conclude that regulation of PTHR-mediated signaling by PKC and beta-arrestins are separable phenomena that both involve the carboxy terminus of the receptor. A major role for PKC and beta-arrestins in preferential regulation of PTHR-mediated G(q) signaling by independent mechanisms at the receptor level was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.