2-5A Synthetase and 2-5A phosphodiesterase were determined by analytical capillary isotachophoresis in comparison to radioenzymatic methods. By means of isotachophoretic analysis, a frequently used radioenzymatic 2-5A synthetase assay was optimized and the results of both assays were compared. Using the isotachophoretic assay the influence of interferon-related cytokines (tumor necrosis factor-alpha and interleukin-2) on 2-5A synthetase induction in neuroblastoma cells was estimated. In contrast to mononuclear blood cells, the tumor necrosis factor induced 2-5A synthetase in these cells. 2-5A Phosphodiesterase was determined using an isotachophoretic assay and a radioenzymatic method. Degradation of A2'p5'A2'p5'A (trimeric form of 2-5A core) was measured by isotachophoresis whereas degradation of a mixture of phosphorus-32 labeled 2-5A cores was registered by radioenzymatic assay. Activity of 2-5A phosphodiesterase was only insignificantly enhanced by interferon in mononuclear blood and neuroblastoma cells. In contrast to the radioenzymatic assays, an accurate determination of 2-5A synthetase as well as of 2-5A phosphodiesterase is possible using the isotachophoretic method because the reactions are followed by measuring the substrates ATP and A2'p5'A2'p5'A, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.